AES MONG DUONG POWER CO. LTD. MONG DUONG 2 BOT COAL FIRED POWER PLANT

____***____

ENVIRONMENTAL MONITORING REPORT FOR MONG DUONG 2 BOT COAL FIRED POWER PLANT

AUGUST-2024

HA NOI, SEPTEMBER – 2024

AES MONG DUONG POWER CO. LTD. MONG DUONG 2 BOT COAL FIRED POWER PLANT

____***____

ENVIRONMENTAL MONITORING REPORT FOR MONG DUONG 2 BOT COAL FIRED POWER PLANT

AUGUST - 2024

Invested by: AES MONG DUONG POWER CO.LTD. Implemented by: BACH KHOA ENVIRONMENTAL AMICABLE TECHNOLOGY, JSC.

GIÁM ĐỐC Nguyễn Ngọc Việt

HA NOI, SEPTEMBER - 2024

CONTENTS

FIGURES	iii
TABLES	iv
GENERAL INTRODUCTION ON MONG DUONG 2 BOT COAL F	FIRED POWER
PLANT, ASH POND 2 AND HOUSING COLONY	5
1. MONG DUONG 2 BOT COAL FIRED POWER PLANT	5
2. ASH POND 2 - MONG DUONG 2 BOT COAL FIRED POWER	R PLANT7
3. HOUSING COLONY	
CHAPTER I. PLAN OF ENVIRONMENTAL MONITORING PROC	GRAM IN MONG
DUONG 2 BOT COAL FIRED POWER PLANT, ASH POND 2 AN	D HOUSING COLONY
IN 2024	
I.1. The purpose of monirtoring program	
I.2. Environmental monitoring parameters and frequency in 2024	
I.3. Monitoring positions	20
I.4. Environmental monitoring method and equipment/instruments	25
CHAPTER II. RESULTS AND ASSESSMENT	
II.1. MONG DUONG 2 BOT COAL FIRED POWER PLANT	
II.1.1. Ambient air	
II.1.2. Air emission	
II.1.3. Noise and Vibration	
II.1.4. Water environment	
II.1.4.1. Wastewater	41
II.1.4.2. Surface water	44
II.1.4.3. Coastal water	
II.2. ASH POND 2	
II.2.1. Wastewater	
II.2.2. Noise	
II.3. HOUSING COLONY	
CHAPTER III. CONCLUSION AND RECOMMENDATION	
III.1. Conclusion	
III.2. Recommendation	
APPENDIX	
APPENDIX 1. APPLICATION OF QA/QC PROGRAM FOR ENVIR	RONMETAL
MONITORING IN MONG DUONG 2 BOT COAL FIRED POWER	PLANT AND ASH
POND 2	
1. QA/QC in the design of environmental monitoring program	55
2. QA/QC on field monitoring	
3. Quality assurance and quality control (QA/QC) in laboratory	
APPENDIX 2. IMAGES OF MONITORING ACTIVITIES ON FIEL	D
APPENDIX 3. MAP OF SAMPLING AREAS	72

APPENDIX 4: THE MONITORING RESULTS	75

FIGURES

Figure 1.1. Mong Duong 2 BOT Coal Fired Power Plant location	6
Figure 1.2. Geographical location of ash pond 2	9
Figure 1.3. The general area of ash pond 2	10
Figure 2.1. The TSP concentration in monitoring positions	32
Figure 2.2. The chart of SO ₂ concentration	33
Figure 2.3. The chart of NO ₂ concentration at monitoring points	34
Figure 2.4. The chart of noise at the monnitoring points in or out of the plant	38
Figure 2.5. The chart of vibration at the monnitoring points in or out of the plant	39
Figure 2.6. The chart of Temperature in cooling water samples	43
Figure 2.7. The chart of Amonium in sanitary wastewater	44
Figure 2.8. The chart of Temperature in surface water samples	44
Figure 2.9. Ammonium concentration in surface water samples	45
Figure 2.10. Coliform concentration in surface water samples	45
Figure 2.11. The chart of Ammonium concentration in coastal water	46
Figure 4.1. QA/QC in lab (ISO/IEC 17025:2005)	60
Figure 4.2. Measuring noise in plant area and taking air ambient samples	67
Figure 4.3. Sampling water in Mong Duong 2 BOT Coal Fired Power Plant	68
Figure 4.4. Sampling air emission in Mong Duong 2 BOT Coal Fired Power Plant	69
Figure 4.5. Taking surface wastewater samples and noise monitoring	70
in the Ash pond 2	70
Figure 4.6. Sampling sanitary wastewater in the housing colony area	71
Figure 4.7. Map of sampling areas	72
Figure 4.8. Map of monitoring surface water positions	72
Figure 4.9. Water sampling positions and noise monitoring	73
Figure 4.10. Wasewater sampling positions	74

TABLES

Table 1.1. The categories of Mong Duong 2 BOT Coal Fired Power Plant are used
together with Mong Duong 1 Thermal Power Plant in Mong Duong Electricity Power
Centre7
Table 1.2. The auxiliary components of ash pond 2
Table 1.3. Environmental parameters and frequency
Table 1.4. The coordinates of monitoring points 109 th time in Mong Duong 2 BOT
Coal Fired Power Plant
Table 1.5. Method for measurement, sampling and preservation 25
Table 1.6. Analytical methods in the Laboratory 27
Table 2.1. Location and coordinate details of surrounding air samples
Table 2.2. Microclimate conditions in February - 2024
Table 2.3. Measured parameters of greenhouse gases 34
Table 2.4. Results of air emission monitoring of stack of line 1, August 202434
Table 2.5. Results of air emission monitoring of stack of line 2, August 2024
Table 2.6. Hg and compound (calculated by Hg)
Table 2.7. The monitoring points of noise (N) and vibration (V)
Table 2.8. The points of water sampling 109 th environmental monitoring
Table 2.9. Wastewater results in ash pond 2 47
Table 2.10. Noise results in ash pond 2
Table 2.11. The monitoring results of domestic wasewwater in Housing colony49
Table 4.1. Summary of quality assurance activities in the design of environmental
monitoring program in Mong Duong 2 Power Plant55
Table 4.2. The current status of quality assurance and quality control activities on field
(Mong Duong 2 BOT Coal Fired Power Plant)
Table 4.4. On-field blank samples (ambient air)
Table 4.5. On-field blank samples (water) 64
Table 4.6. % RPD of QC duplicate samples (ambient air)
Table 4.7. % RPD of QC duplicate samples (water)65

GENERAL INTRODUCTION ON MONG DUONG 2 BOT COAL FIRED POWER PLANT, ASH POND 2 AND HOUSING COLONY

1. MONG DUONG 2 BOT COAL FIRED POWER PLANT

Mong Duong 2 BOT Coal Fired Power Plant is one of two thermal power plant projects. It locates in Mong Duong Electricity Power Centre and has construction site that locates near No. 18A national route. The distance from Mong Duong thermal power plant to Ha Long city is about 50 km and to Cam Pha commune about 18 km in the North East. Mong Duong Electricity Power Centre locates in zone 3, Mong Duong ward, Cam Pha commune, Quang Ninh province. This position lies near Mong Duong estuary and along Luong Gac (Gac Channel). This is an advantage for not only transporting materials by waterway to construction site but also installing cooling water system for two factories. Along South East coast of Electricity Power Centre is range of low mountain. In Luong Gac, there is coal port and chemical store belong Bai Tu Long Coal Company. The plant has total capacity about 1240MW (including two sets of machinery with average capacity is 620MW) with total investment about 2 billion USD. Construction stage was started since September 15th, 2011 and is scheduled supplying commercial electricity for each set of machinery.

- No. 1 set of machinery was operated on March 4th, 2015 with capacity 600MW.

- No. 2 set of machinery was operated on April 22nd, 2015 with capacity 600MW. Total capacity is 1200MW.

Area of plant is 81,822 ha. Plant is built in zone 3, Mong Duong ward, Cam Pha commune, Quang Ninh province. Boundary of plant: by the East: beside Binh Minh port; by the South: beside rivulet; by the West: beside Mong Duong 1 thermal power plant; by the North: beside the road which leads to plant and Mon Duong river. The location to build project has many advantages in transferring material by waterway, constructing, investigating, exploiting, and operating plant.

The location of Mong Duong Electricity Power Centre including Mong Duong 2 BOT Coal Fired Power Plant project and general plan of Centre is shown in **Figure 1.1**

Figure 1.1. Mong Duong 2 BOT Coal Fired Power Plant location

Mong Duong 2 BOT Coal Fired Power Plant project is built after Mong Duong Electricity Power Centre completing infrastructures (leveling platform, converting flow of Mong Duong river, completing water collection system, water discharge system to cool, ash dumps...). The works within project include:

+ Infrastructure of thermal power plant: including generator, primary transformer and ancillary works;

+ The operator, warehouse, workshop;

+ Piping, cooling pump system of general channel from Luong Gac river to Electricity Power Centre.

+ Sewage piping system from plant to Luong Gac canal

+ Channel discharges cooling water into general discharge system of Electricity Power Centre

+ Piping system leads oil from oil receiving point;

+ Slag treating system includes pump station and pump system, which leads slag to general slag, discharged pool of Electricity Power Centre

+ Coal warehouse (about 15 days);

+ Construction treats wastewater;

- + Private road;
- + Fire preventing and fighting system;
- + Temperatureorary and fixed accommodation;
- + The drainage system within plant.
- + Port that receive oil and limestone
- + Slag landfill

The categories used together with Mong Duong 1 Thermal Power Plant are shown in the following table:

Table 1.1. The categories of Mong Duong 2 BOT Coal Fired Power Plantare used together with Mong Duong 1 Thermal Power Plant in MongDuong Electricity Power Centre

No.	Categories	Description					
1	All area of centre	Mong Duong 2 plant account for 50%					
2	Coal receiving region	Using conveyer to transport coal in centre					
3	Cooling water supplying	This construction is built by EVN. Connection point					
	channel	is pump station in the East of project					
4	Cooling water	This construction is built by EVN. It locates in the					
	discharging channel	North of project					
5	Fresh water supplying	This construction is built in the North - West by					
	system	EVN.					
6	500 KV connection line	This construction is built by EVN. Mong Duong 2					
		connection structure inside the distribution station					
7	110 KV power supply	This construction is built by EVN. Mong Duong 2					
	line for testing in factory	connected at self-substation to the point inside the					
8	Road	At primary road of Mong Duong 2.					
9	FO oil and limestone	Only used by Mong Duong 2. Area is 0.57 ha					
	receiving port						
Sour	ce: AES-VCM Mong Duong	Power Co. Ltd., October, 2014					

All general categories of construction are completed and put in use

2. ASH POND 2 - MONG DUONG 2 BOT COAL FIRED POWER PLANT

The area of ash pond 2 of Mong Duong 2 BOT Coal Fired Power Plant is 187 ha and it is located at the Cong Hoa commune, Cam Pha town. It was about 4.3 km in the

North of Mong Duong plant and about 50 km far from Ha Long city and 18 km from Cam Pha town. The ash pond 2 was designed to contain the amount of ash during 30 years of Mong Duong plant's operations.

The ash pond 2 included the system of ash boxes, dam around ash pond and dam around ash boxes, collecting rainwater drainage system, sewage pipeline of the dimissing slag from the Mong Duong 2 BOT project to the ash pond 2 and circulation rainwater pipeline from the ash pond 2 to the plant (10ha).

The total area of other auxiliary construction is 0.204 ha. These include pump stations, operator house, electric lines supplying for recirculation wastewater pump station in ash pond 2, the roads leading to ash pond.

The auxiliary components of ash pond 2 detail as in the following table:

No.	Components	Technical parameters
1.	Road to ash pond	- Length: 300m
		- Width: 6m
2.	Road to ash pond B	Surface top of dikes, dams with a width of
		10m
3.	Drainage channel of basin	- Rectangular channel system, steel-rod
		concrete
		- Slope: 1:2
		- Length: About 2500m.
4.	Recirculation pump station	- In the West of ash pond, steel-rod
		concrete
		- Dimensions: 13.5 x 6.0 x 6.2
		- Pump system configuration is 3x50%.
5.	Operation house	- Office area: Area is 60m ² , steel frame
		structure
		- Storage area: Area is 100m ² .

 Table 1.2. The auxiliary components of ash pond 2

Conterminous areas around ash pond 2 include:

- The West area and the South area of ash pond 2 abuts with Thac Thay river.

- The North area of ash pond 2 abuts with residental area of Ha Chanh village, Cong Hoa commune and is far about 250 m from residential area.

- The East area of ash pond 2 abuts with Thai Viet Long construction material producting company and is far 250 m from Ha Chanh inter-village road.

- About 750m from the North of Cam Pha brick factory
- About 300m from the South East of Ha Chanh clay mine.
- About 500m from the South of Thanh Dinh wood manufacturing company.

The feature of ash pond has good character of topography and geology, sparse population, mainly hills, mountains, river and stream. The main traffic is road. Rivers, canal around ash pond has small capacity of water and is not suitable for transportation. Therefore, ash transportation is mainly on the road.

The location and total area of ash pond 2 are shown in Figure 1.2; 1.3.

Figure 1.2. Geographical location of ash pond 2

Figure 1.3. The general area of ash pond 2

3. HOUSING COLONY

The Housing area is 4 ha. In addition, it is located in Section 8, Mong Duong ward, Cam Pha city, Quang Ninh province. This area is based in Mong Duong ward residential area surrounded by the new and old National Highway No.18, where the transportation is very convenient. The Housing was in operation in April 2014. The scale of the Housing colony for staffs of AES-VCM Mong Duong Power Limited Company includes:

- 02 dormitories with construction area of 235 m², three floors; size: 26.72 x 19.22 x 13.9 meters;
- 02 apartment blocks with construction area of 386 m², three floors; size: 33.82 x 11.72 x 13.9 meters;

- 01 apartment blocks with construction area of 370 m², three floors; size: 32.29 x 11.69 x 13.9
- 01 multifunctional building with construction area of 1,381 m²; two floors, size:
 54.125 x 37 x 14.1 meters;
- 01 staff driver accommodation with construction area of 235 m²; two floors, size: 31.47 x 7.72 x 12.7 meters;
- 01 technical houses with construction area of 140 m²; one floor, size: 42.25 x
 7.5 x 5 meters;
- 01 substation of 1,200 KVA
- 01 multi-court with construction area of 400m²

The entire building was used for officers and specialist staffs joining the operation of Mong Duong 2 BOT Coal Fired Power Plant. The largest number of people can be up to 200 people.

CHAPTER I. PLAN OF ENVIRONMENTAL MONITORING PROGRAM IN MONG DUONG 2 BOT COAL FIRED POWER PLANT, ASH POND 2 AND HOUSING COLONY IN 2024

The environmental monitoring program in August 2024 is the 109th monitoring time in operation stage of plant and the 37th monitoring time in operation stage of ash pond 2. The main purpose is to show the judge about environment status of plant and ash pond 2 during operation stage. Environmental monitoring program are performed to make report on periodic environment quality of Mong Duong 2 BOT Coal Fired Power Plant and Ash pond 2. This program ensures environmental management object of Mong Duong 2 BOT Coal Fired Power Plant project to meet the requirements of national environmental protection laws and AES company during operation stage. The detailed objects are shown as following parts:

I.1. The purpose of monirtoring program

The purpose of monitoring program is to evaluate the environmental quality, to examine the pollution level of each environmental component and to collect continuous data to serve environmental management works for Mong Duong 2 BOT Coal Fired Power Plant and Mong Duong Electricity Power Centre. In detail:

- ✓ Components, polluted sources, concentration/contents/intensity of pollutants
- ✓ The impact of environmental agents/pollutants
- ✓ Forecasting changes in the levels and effects of these agents
- ✓ Information to managers, namely management board of Mong Duong thermal power plant to take measures in order to mitigate or prevent the harmful effects of environmental pollution caused by the operation of the plant

Besides, this environmental monitoring program is also followed the requirements of approved EIA report of Mong Duong 2 BOT Coal Fired Power Plant (2007).

Since the fourth quarter of 2023, environmental component permits are no longer valid for the plant area, ash pond 2 and housing colony area. All three areas comply with the Environmental License issued by the Ministry of Natural Resources and Environment No. 418/GPMT-BTNMT dated October 25th, 2023.

I.2. Environmental monitoring parameters and frequency in 2024

All the environmental monitoring parameters are selected typically for each environmental component.

For Mong Duong 2 BOT Coal Fired Power Plant, ash pond 2 and housing Colony, monitoring parameters selected in 3rd quarter (August 2024) monitoring time are strictly complied with EIA report; Environment License No. 418/GPMT-BTNMT dated October 25th, 2023 and based on the fact operating stage of the factory.

Main monitoring parameters and frequency are seen in table below:

No	Item	Term of	Location	Frequ	ency requir	ement	Monitoring parameters	Reference	Final	Sampling
		work		ADB	MONRE	Permit		Standard	frequency	Quantity
				EIA	EIA					
				A. Mong	g Duong 2	BOT Coal	Fired Power Plant			
1.	Ambi	ent air	Baseline air	Monthly	Quarterly	-	SO ₂ ; TSP; PM2.5;	QCVN	Quarterly	05
			quality	for 1 st			PM10; NO _x ; CO	05:2023/BTNMT		
			monitoring	year						
			stations							
			(total: 5	Quarterly						
			locations)	thereafter						
2.	Micro	climate	Baseline air	Monthly	Quarterly	-	Temperature, humidity,	QCVN	Quarterly	05
			quality	for 1 st			wind speed, wind	46:2012/BTNMT		
			monitoring	year			velocity			
			stations							
			(total: 5							
			locations)							
3.	Nosie (da	y time and	Baseline air	-	Quarterly	-	Noise (Leq)	QCVN	Quarterly	05x2
	night	time)	quality					26:2010/BTNMT		
			monitoring							
			stations							

 Table 1.3. Environmental parameters and frequency

No	Item	Term of	Location	Frequ	ency requi	rement	Monitoring parameters	Reference	Final	Sampling
		work		ADB	MONRE	Permit		Standard	frequency	Quantity
				EIA	EIA					
			(total: 5							
			locations)							
4.	Industrial	air emission	Stack of line	-	Quarterly	Quarterly	SO ₂ , NO _x , CO, Dust, Hg	QCVN	Quarterly	02
			1 & 2					22:2009/BTNMT		
5.	. Green house gases		K1: Plant	-	Quarterly	-	CO ₂ , CH ₄ , N ₂ O	-	Quarterly	01
			area, near							
			coal store							
6.	Noise (da	y time and	- 5m from	Weekly	Quarterly	Quartely	Noise (LAeq)	QCVN	Quartely	29 x2
	night	t time)	noise	Monthly				26:2010/BTNMT		
			resource	(for first	-					
				year)						
7.	Vibration (day time and	- 5m from	Quarterly	Quarterly	Quarterly	Vibration (LAeq)	QCVN	Quarterly	29 x2
	night	t time)	noise					27:2010/BTNMT		
			resource							

No	Item	Term of	Location	Frequ	iency requir	rement	Monitoring parameters	Reference	Final	Sampling
		work		ADB	MONRE	Permit		Standard	frequency	Quantity
				EIA	EIA					
8.	Water	Surface	21 positions	Yearly	Quarterly	-	Temperature, pH; TSS;	QCVN	Quarterly	21
	environme	water	(12 positions				EC; NH4 ⁺ ; NO ₃ ⁻ ; DO;	10:2023/BTNMT		
	nt	including	of coastal				BOD ₅ ; Total N&P			
		coastal	water)				Heavy metals (As, Cr,			
		water					Cd, Cu, Pb, Zn, Ni, Hg,			
							Fe, Mn, Se), Total oil			
							and grease, Coliform			
9.		Cooling	CW1, CW2,	Yearly	Quarterly	Quarterly	Temperature, pH; Color;	QCVN 40:2011/	Monthly	03
		water	CW3				TSS; TDS; COD; NH ₄ ⁺ ;	BTNMT		
							BOD ₅ ; Total N&P			
							Heavy metals (As, Cr,	QCĐP		
							Cd, Cu, Pb, Zn, Ni, Hg,	3:2020/QN		
							Fe, Mn, Se), Mineral			
							Oil & grease, F ⁻ ; H ₂ S;			
							Residue Chlorine;			
							Coliform			

No	Item	Term of	Location	Frequ	ency requi	rement	Monitoring parameters	Reference	Final	Sampling
		work		ADB	MONRE	Permit		Standard	frequency	Quantity
				EIA	EIA					
10.		Sanitary	SH1, SH2,	Quarterly	-	Quarterly	pH; BOD ₅ ; TSS; TDS;	QCVN	Quartely	03
		wastewater	SH3				sunfur (H ₂ S);	14:2008/BTNMT		
							Ammonium (NH4);			
							Nitrat (NO ₃ ⁻); Oil and			
							Grease; Phophatse			
							(PO ₄ ³⁻); coliform			
11.		Industrial	From the	Quarterly	-	Quarterly	Temperature; pH;	QCVN40:2011/	Quarterly	01
		waste water	discharge				Colour; COD; BOD ₅ ;	BTNMT		
		(WW1)	point into the				TSS; As, Hg; Pb, Cd,			
			coolant				$Cr^{3+}, Cr^{6+}, Cu, Zn, Ni,$			
			channels				Mn, Fe, Oil & grease, F ⁻			
							, S ²⁻ ; Nutrients (N&P), ;			
							Residual chlorine,			
							Ammonium and			
							Coliform			
B. A	SH POND 2	2			L					•
1.	Wast	ewater	AP-W1:	Quarterly	-	Quarterly	Temperature, pH, Color,	QCĐP	Quarterly	02
			Wastewater				TSS, COD, BOD5, As,	3:2020/QN		
			from AP2				Hg, Pb, Cd, Cr(III),			

No	Item	Term of	Location	Frequ	ency requi	ement	Monitoring parameters	Reference	Final	Sampling
		work		ADB	MONRE	Permit		Standard	frequency	Quantity
				EIA	EIA					
			Reservoir;				Cr(VI), Cu, Zn, Ni, Mn,			
			AP-W2:				Fe, Total mineral Oil			
			Output of				and Grease, residual			
			wastewater				chlorine, Sunfua, total			
			treatment				N, total P, Ammonium,			
			system – Ash				Flouride, Cyanide,			
			pond 2				Phenol, Coliform			
2.	Noise (da	y time and	AP2-N:	Quarterly	-	Semi-	Noise (LAeq)	QCVN	Quarterly	01x2
	night	t time)	Wastewater			annually		26:2010/BTNMT		
			treatment							
			plant							
С. Н	OUSING C	OLONY		1	I					I
1.	Sanitary	wastewater	HS-NT1:	Quarterly	-	Quarterly	Temperature, pH, TDS,	QCVN	Quarterly	02
			Wastewater				TSS, BOD ₅ , $S^{2-;}$ NO ₃ ⁻ ,	14:2008/BTNMT		
			before the				$\rm NH_4^+, PO_4^{3-}, total$			
			wastewater				surfactants, Total oil and			
							grease, coliform			

No	Item	Term of	Location	Frequ	iency requir	rement	Monitoring parameters	Reference	Final	Sampling
		work		ADB	MONRE	Permit		Standard	frequency	Quantity
				EIA	EIA					
			treatment							
			system;							
			HS-NT2:							
			Wastewater							
			after the							
			wastewater							
			treatment							
			system							

I.3. Monitoring positions

All the environmental monitoring positions are selected by the fact situation of the plant and are followed by the proposed program from EIA report that is approved in permit No 803/QĐ-BTNMT (22nd May 2007), demand of monitoring in operating period is built in Social and Environment Management System - SEMS, Environment License No. 418/GPMT-BTNMT dated October 25th, 2023.

The survey was conducted before sampling to examine the monitoring points by GPS-Silva-21802-901, Sweden. The coordinates are listed as in **Table 1.4** follows:

Environmental	No	Location	X	Y			
Aspect							
A. MONG DU	A. MONG DUONG 2 BOT COAL FIRED POWER PLANT						
I. AIR EN	NVIRON	MENT					
Ambient air	K1	Plant area near coal store	21°04'13.4" N	107°20'56.2"E			
(5 positions)	K2	Nguyen Trai the primary	21°03'57.5" N	107°19'20.1"E			
		school, Mong Duong					
		ward					
	K3	Mong Duong the	21°03'56.2"N	107°20'20.8"E			
		secondary school, zone 1					
		Mong Duong ward					
	K4	Household of Mr. Ha Van	21°05'47.6"N	107°21'44.7"E			
		Tien, village 2, Cam Hai					
		commune					
	K5	Trang Huong Village,	21°03'21.2"N	107°23'26.7"E			
		Dong Xa Commune, Van					
		Don District (brigade area					
		No.242)					
Industrial air	S1	Stack of line 1	21°04'18.3"N	107°20'59.7"E			
emission			2330961	458239			
	S2	Stack of line 2	21°04'18.3"N	107°20'59.7"E			
			2330961	458233			
II. WATE	R ENVI	RONMENT	·				

Table 1.4. The coordinates of monitoring points 109th time in Mong Duong 2 BOTCoal Fired Power Plant

Cooling water	CW1	Intake point of cooling	21°04'32.6"N	107°21'18.5"E
(3 positions)		water		
	CW2	Discharge point into the	21°04'28.3"N	107°20'57.1"E
	cooling water channel			
	CW3	Discharge point to	21°04'42.4"N	107°21'03.1"E
	00	common Mong Duong	2331698	458326
		Power complex channel		
Sanitary	SH1	Admin area	21°04'39.6"N	107°21'07.8"E
wastewater			2331603	458369
	SH2	Chemical dosing building	21°04'28.7"N	107°21'09.6"E
			2331391	458375
	SH3	Coal warehouse area	21°04'11.5"N	107°20'56.5"E
			2331262	458175
Industrial waste	WW1	Discharge point into the	21°04'31.1"N	107°21'04.4"E
water		Cooling water channel		
			2331338	458360
Surface water	MD1	Tran bridge (Zone 4,	21°05'43.1"N	107°22'50.4"E
		Mong Duong ward)		
	MD2	Mong Duong bridge	21°04'48.3''N	107°21'04.4"E
	MD3	Area where conveyor	21°05'12.8"N	107°22'42.7"E
		transfers coal to factory		
	MD4	Estuary where riverruns	21°03'48.0"N	107°19'26.7"E
		into Luong Gac canal		
	SW12	Cooling water canal head	21°03'51.5"N	107°20'50.6"E
	SW13	Behind cooling water	21°04'07.8"N	107°21'00.8"E
		outlet of Mong Duong 1		
		Thermal Power Plant		
	SW14	Behind cooling water	21°04'25.3"N	107°21'41.0"E
		outlet of Mong Duong 2		
		BOT Coal Fired Power		
		Plant		
	SW15	Cooling water channel	21°04'39.5''N	107°20'40.6"E
	CW16	Cooling water channel	21°04'43 4"N	107°20'50.9"E
	S W 10	e o o ining water entanner	21 01 15.1 10	
Coastal water	SW10 SW2	SW2	21°05'17.4''N	107°23'07.2"E

	SW4	SW4	21°04'08.9"N	107°22'02.9"E
	SW5b	SW5b	21°04'45.6"N	107°22'11.5"E
	SW6	SW6	21°03'05.7"N	107°22'14.6"E
SW7		SW7	21°03'12.3"N	107°22'49.0"E
SW8		SW8	21°05'42.5"N	107°22'16.0"E
	SW9	SW9	21°05'31.0"N	107°22'36.2"E
SW10		SW10	21°04'59.0"N	107°22'36.3"E
	SW11	SW11	21°03'49.2''N	107°22'09.2"E
	SW18	SW18	21°04'33.7"N	107°21'21.3"E
	SW19	SW19	21°04'33.5"N	107°21'42.5"E
III. NOISE	AND VI	BRATION		
Noise level (N)	N1, V1	Unit 1 area – pump for	2331206	458244
and Vibration		boiler – 1 st floor – turbine		
(V)		building		
	N2, V2	Unit 1 area – compressor	2331206	458244
		- 1 st floor - turbine		
		building		
	N3, V3	Unit 2 area – pump for	2331005	458247
		boiler – 1 st floor – turbine		
		building		
	N4, V4	Unit 2 area – compressor	2331207	458244
		- 1 st floor - turbine		
		building		
	N5, V5	Unit 1 – 2 nd floor area –	2331215	455112
		turbine building		
	N6, V6	Unit 2 – 2 nd floor area –	2331132	458152
		turbine building		
N7, V7		Unit 1 – 3 rd floor area –	2331198	458299
		turbine building		
	N8, V8	Unit 2 – 3 rd floor area –	2331174	458153
		turbine building		
	N9, V9	Ball mill area – Unit 1 –	2331141	458294
		1 st floor – coal crusher		
		area		

N10,	Ball mill area – Unit 2 –	2331164	458177
V10	1 st floor – coal crusher		
	area		
N11,	Hopper pouring, heater	2331075	458294
V11	ash hopper of Unit $1 - 1^{st}$		
	floor – Boiler building		
N12,	Hopper pouring, heater	2331073	458169
V12	ash hopper of Unit $2 - 1^{st}$		
	floor – Boiler building		
N13,	Hopper pouring area of	2331031	458360
V13	Unit 1 – 2 nd floor –		
	electrostatic precipitator		
	area		
N14,	Hopper pouring area of	2331053	458164
V14	Unit 2 – 2 nd floor –		
	electrostatic precipitator		
	area		
N15,	Compressor – 1 st floor –	2331053	458253
V15	electrostatic precipitator		
	area		
N16,	Circulating pump and	2330949	458241
V16	oxygen pump – FGD		
	absorption tower of Unit 1		
N17,	Circulating pump and	2330949	458210
V17	oxygen pump – FGD		
	absorption tower of Unit 2		
N18,	Exhaust gases dryer	2330976	458241
V18	including under shaft		
	bearing and upper shaft		
	bearing of Unit 1 – FGD		
	and absorption tower area		
N19,	Exhaust gases dryer	2330978	458137
V19	including under shaft		
	bearing and upper shaft		
	bearing of Unit 2 – FGD		
	and absorption tower area		

	N20	Smoke fan area of ground	2330964	458281
	V20	floor of Unit 1 FGD and	2550501	130201
	V 20	absorption tower area		
	ND1	Supplied tower area	2221116	450114
	N21,	Smoke fan area of ground	2331110	438114
	V21	floor of Unit 2 – FGD and		
		absorption tower area		
	N22,	Pump – Plaster building	2330956	458241
	V22			
	N23,	Vacuum conveyor filter –	2330974	458241
	V23	3rd floor – plaster		
		building		
	N24,	Silo 1 – Area of slag silo	2331115	458333
	V24	at the bottom of furnace		
	N25,	Silo 2 - Area of slag silo	2330915	458092
	N25	at the bottom of furnace		
	N26,	Excavator – coal	2330727	458032
V26		warehouse		
N27,		Coal dividing machine of	2331166	458241
V27		Unit 1 – Coal warehouse		
	N28,	Coal dividing machine of	2331165	458137
	V28	Unit 2 – Coal warehouse		
	N29,	Coal scraper – Coal	2330738	457721
V29 warehou		warehouse		
B. ASH POND 2				
Wastewater	AP-	Wastewwater from	21°06'40.9"N	107°21'19.8"E
	W1	neutralization tank		
	AP-	Output of wastewater	21°06'42.5"N	107°21'12.9"E
	W2	treatment system – Ash	2335395	458628
		pond 2		
Noise	AP2-N	Wastewater treatment	21°6'43.23"N	107°21'15.47"
		plant		Е
			2335415	458700
C. HOUSING CC	DLONY	1	1	
Domestic	HS-	Wastewater before the	21°04'16.2''	107°20'01.1''
wastewater	NT1	wastewater treatment	Ν	Е
		system		
			I	

HS-	Wastewater after the	21°04'16.2''	107°20'01.2''
NT2	wastewater treatment	Ν	Е
	system	2330894	456546

Main environmental monitoring methods are:

- ✓ Surveying, collecting data, sampling, on-field measurement;
- ✓ Sampling, preservation and measurement on-field and laboratory in compliance with current Vietnamese standards, circulars and regulations;
- ✓ Data processing and evaluation, statistical method in comparison to QCVN/TCVN and the world.

Methods for measurements, sampling and preservation; equipment/instruments are as in Table 1.5 and Table 1.6

No	Environmental components	Name/ number of sampling and measurement methods	Equipment / LOD
AME	BIENT AIR		
1.	Temperature	QCVN 46:2022/BTNMT	From $0^{\circ}C - 70^{\circ}C$
2.	Humidity	QCVN 46:2022/BTNMT	From 0 – 100% RH
3.	Wind speed	QCVN 46:2022/BTNMT	From 0 – 40m/s
4.	Wind direction	QCVN 46:2022/BTNMT	From 0 – 360°
5.	TSP		Dust sampling equipment
	(24 hrs)	TCVN 5067:1995	with high volume Staplex
			Model TFIA-2 FCDT

Table 1.5. Method for measurement, sampling and preservation

	Environmontal	Name/ number of	
No	Environmental	sampling and	Equipment / LOD
	components	measurement methods	
6.	PM10	AS/NZS 3580.9.6:2003	Sampling volume: 0.5-2
	(24 hrs)		litres/min
			The equipment includes two
			air sampling tube impingers
			with absorption method the
			timer is to set the sampling
			time from 1-999 minutes
			Dust PM10 Samplers,
			Airmetric-TAS PM10-USA
7.	PM2.5	SOP-CO	$10\mu g/m^3$
8.	СО	TCVN 5971:1995	Equipment for gas sampling
9.	SO ₂	TCVN 6137:1995	multifunction, Kimoto HS-7
			Flow Sampling: 0,5-2
			liter/min
			The equipment includes two
10	NO2	OCVN 46·2022/BTNMT	air sampling tube impingers
10.	1002		with absorption method, the
			timer is to set the sampling
			time from 1-999 minutes
NOIS	SE		
1.	Noise (LAeq)	TCVN 7878-2:2018	30 - 130 dB
VIB	RATION		
1.	Vibration (LAeq)	TCVN 6963:2001	30-130dB
SUR	FACE WATER	TCVN 6663-1:2011, TCVN	6663-3:2016, TCVN 6663-
		4:2018, TCVN 6663-6:2018, 7	TCVN 6663-4:2020
1.	Temperature	SMEWW 2550B:2023	Từ 4 - 50°C
2.	pН	TCVN 6492:2011	Từ 2 - 12
3.	Conductivity (EC)	SMEWW 2510:2023	Từ 0 - 100 mS/cm
4.	DO	TCVN 7325: 2016	0.1 - 16 mg/L
WAS	TEWATER	TCVN 6663-1:2011; TCVN 6	6663-3:2016;

No	Environmental components	Name/ number of sampling and measurement methods	Equipment / LOD	
		TCVN 6663-4:2018; TC 5994-1995	VN 6663-6:2018; TCVN	
1	Tomporatura	SMEWW 2550D-2022	4 50°C	
1.	Temperature	SIVIE VV VV 2330B.2023	4-50 C	
2.	pН	TCVN 6492:2011	2-12	
COASTAL WATER		ISO 5667-9:2015; TCVN 6663-1:2011; TCVN 5998:1995; TCVN 6663-3:2016		
1.	pН	TCVN 6492:2011	2-12	
2.	Temperature	SMEWW 2550B:2023	4-50°C	
3.	Conductivity (EC)	SMEWW 2510B:2023	0-100 mS/cm	
4.	Dissolved Oxygen (DO)	TCVN 7325:2016	0.1-16 mg/L	

Table 1.6. Analytical methods in the Laboratory

No	Environmental components	Name/ number of analytical methods	MDL/LOD
AMB	SIENT AIR		
1.	Total suspended particulate (TSP)	TCVN 5067:1995	10 µg/m ³
2.	PM10	AS/NZS 3580.9.6:2003	$10 \ \mu g/m^3$
3.	СО	SOP-PT-01	3,000 µg/m ³
4.	SO ₂	TCVN 5971:1995	$10 \ \mu g/m^3$
5.	NO ₂	TCVN 6137:1995	$5 \mu g/m^3$
AIR	EMISSION		
1.	Dust	EPA method 5 TCVN 5977:2009	5 mg/Nm ³ 5 mg/Nm ³
2.	SO ₂	EPA method 6	3.4 mg/Nm^3
3.	NOx	EPA method 7	5.0 mg/Nm ³
4.	Hg	EPA Method 29	0.001 mg/Nm ³
WAS	STEWATER		
1.	Colour (pH=7)	TCVN 6185: 2015	5.0 Pt -Co
2.	$BOD_5 (20^{\circ}C)$	SMEWW 5210B:2023	1.0 mg/L
3.	COD	SMEWW 5220 C:2023	3.0 mg/L
4.	Total suspended solid (TSS)	TCVN 6625 : 2000	3.0 mg/L
5.	Arsenic (As)	EPA Method 200.8	0.0015 mg/L
6.	Mercury (Hg)	EPA Method 200.8	0.0005 mg/L
7.	Lead (Pb)	EPA Method 200.8	0.002 mg/L

No	Environmental components	Name/ number of analytical methods	MDL/LOD
8	Cadmium (Cd)	EPA Method 200 8	0.0005 g/L
9.	Chrome VI	SMEWW 3500-Cr.B 2023	0.003 mg/L
		EPA Method 200.8 +	0.000 119.2
10.	Chrome III	SMEWW 3500-Cr.B 2023	0.003 mg/L
11.	Copper (Cu)	EPA Method 200.8	0.001 mg/L
12.	Zinc (Zn)	EPA Method 200.8	0.005 mg/L
13.	Nickel (Ni)	EPA Method 200.8	0.001 mg/L
14.	Manganese (Mn)	EPA Method 200.8	0.002 mg/L
15.	Iron (Fe)	EPA Method 200.8	0.02 mg/L
16.	Mineral Oil	SMEWW 5520B&F:2023	1.0 mg/L
17.	Fluoride (F-)	SMEWW 4500-F ⁻ .B&D:2023	0.03 mg/L
18.	Sulfide (calculated by H ₂ S)	SMEWW 4500-S ²⁻ .B&D:2023	0.03 mg/L
19.	Total Nitrogen	TCVN 6638:2000	1.0 mg/L
20.	Total phosphorus	TCVN 6202: 2008	0.01 mg/L
21.	Residual Chlorine	TCVN 6225 – 3:2011	0.2 mg/L
22.	Ammonium (calculated by N)	SMEWW 4500-NH ₃ .B&F:2023 4500-NH ₃	0.03 mg/L
23.	Coliform	SMEWW 9221B:2023	1.8 MPN/100mL
SUR	FACE WATER		
1.	Colour (pH=7)	SMEWW 5210B:2023	5.0 Pt -Co
2.	Total Suspended solids (TSS)	SMEWW 4500-NH ₃ .B&F:2023	1.5 mg/L
3.	$BOD_5 (20^{\circ}C)$	US EPA Method 200.8	1.0 mg/L
4.	Ammonium NH ₄ ⁺	US EPA Method 200.8	0.02 mg/L
5.	Arsenic (As)	US EPA Method 200.8	0.0015 mg/L
6.	Mercury (Hg)	US EPA Method 200.8	0.0003 mg/L
7.	Lead (Pb)	US EPA Method 200.8	0.002 mg/L
8.	Cadmium (Cd)	US EPA Method 200.8	0.0003 mg/L
9.	Chrome	US EPA Method 200.8	0.006 mg/L
10.	Copper (Cu)	US EPA Method 200.8	0.002 mg/L
11.	Zinc (Zn)	US EPA Method 200.8	0.03 mg/L
12.	Nickel (Ni)	US EPA Method 6020B	0.002 mg/L
13.	Manganese (Mn)	US EPA Method 200.8	0.005 mg/L
14.	Iron (Fe)	SMEWW 5520B:2023	0.05 mg/L
15.	Selene (Se)	SMEWW 9221B:2023	0.001 mg/L
16.	Total Oil and grease	SMEWW 5210B:2023	1.0 mg/L
17.	Coliform	SMEWW 4500-NH ₃ .B&F:2023	1.8 MPN/100mL
COA	STAL WATER		
1.	BOD ₅	SMEWW 5210B:2023	1 mg/L
2.	TSS	TCVN 6625:2000	3 mg/L
3.	Nitrate (NO ₃ ⁻ -N)	SMEWW 4500 NO ₃ -E:2023	0.02 mg/L
4.	Total N	SMEWW 4550 NO3 ⁻ .E:2023	0.02 mg/L
5.	Total P	TCVN 6202: 2008	0.05 mg/L
6.	Ammonium	SMEWW 4500 NH ₃ .B&F:2023	0.01 mg/l

No	Environmental components	Name/ number of analytical methods	MDL/LOD
7.	Arsenic (As)	US EPA Method 200.8	0.001 mg/L
8.	Mercury (Hg)	US EPA Method 200.8	0.0003 mg/L
9.	Lead (Pb)	US EPA Method 200.8	0.0005 mg/L
10.	Cadmium (Cd)	US EPA Method 200.8	0.0005 mg/L
11.	Chrome (Cr)	US EPA Method 200.8	0.0015 mg/L
12.	Copper (Cu)	US EPA Method 200.8	0.003 mg/L
13.	Zinc (Zn)	US EPA Method 200.8	0.003 mg/L
14.	Nickel (Ni)	US EPA Method 200.8	0.002 mg/L
15.	Manganese (Mn)	US EPA Method 200.8	0.0015 mg/L
16.	Iron (Fe)	US EPA Method 6020B	0.005 mg/L
17.	Selene (Se)	US EPA Method 200.8	0.001 mg/L
18.	Total oil and grease	SMEWW 5520B:2023	1.0 mg/L
19.	Coliform	SMEWW 9221B:2023	1.8 MPN/100mL

Notes:

- TCVN: Viet Nam standards
- SOP-CO: Standard Operating Procedure for on-field sampling of CO
- MASA: Methods of Air Sampling and Analysis
- AS/NZS: Australian/New Zealands Standards
- EPA: Environment Protection Agency
- SMEWW: Standard Method for The Examination of Water and Waste Water

CHAPTER II. RESULTS AND ASSESSMENT

The 109th environmental monitoring time in operation time of Mong Duong 2 plant and and the 37th monitoring time in operation stage of ash pond 2 was implemented in the period from 14-15/08/2024 at 05 locations with the ambient air environment, 02 industrial air emission positions, 29 positions for noise monitoring, 29 positions for vibration monitoring, 03 cooling water samples, 03 sanitary wastewater samples, 01 industrial wastewater samples, 21 surface water samples and coastal water samples; the environmental monitoring in the Ash pond 2 are included the 02 wastewater samples, 01 noise sample; the environmental monitoring in the Housing area included 02 points for domestic wastewater . The monitoring results are shown in the following sections.

II.1. MONG DUONG 2 BOT COAL FIRED POWER PLANT

II.1.1. Ambient air

The ambient air was monitored on 14th- 15th, August 2024 at 05 points:

No	Positions	Х	Y	
K1	Project area near coal store	21°04'13.4" N	107°20'56.2"E	
K2	Hien's house, group 9 zone 2, Mong Duong ward	21°03'57.5" N	107°19'20.1"E	
K3	Residential area near TKV Group, Mong Duong ward	21°03'56.2"N	107°20'20.8"E	
K4	Residental area of village 2, Cam Hai commune	21°05'47.6"N	107°21'44.7"E	
K5	Residental area of Trang Huong village, Dong Xa commune, Van Don distric	21°03'21.2"N	107°23'26.7"E	

Table 2.1. Location and coordinate details of surrounding air samples

The results of ambient air monitoring are presented in Appendix - Results of environmental monitoring of ambient air. With climate condition, microclmate in Mong Duong 2 BOT Coal Fired Power Plant in the 109nd monirtoring time of operation stage is showed in **Table 2.2**

No.	Symbol	Position	Temperatur e (°C)	Humidity (%)	Wind speed (m/s)	Wind direction
1	K1	Plant area near the coal store	29.4	94.1	2.5	SE
2	K2	Nguyen Trai the primary school, Mong Duong ward	29.1	94.7	2.4	SE
3	К3	Mong Duong the seconadry school, zone 1 Mong Duong ward	29.7	93.8	1.9	SE
4	K4	Household of Mr. Ha Van Tien, village 2, Cam Hai commune	30.7	89.4	2.6	SE
5	K5	Trang Huong Village, Dong Xa Commune, Van Don District (brigade area No.242)	30.2	90.7	2.5	Е

 Table 2.2. Microclimate conditions in August - 2024

The ambient air quality in positions of project is showed through monitoring results with basic parameters as follows:

* TSP

TSP contents at the different points and different times during the day were shown in **Figure 2.1.**

Figure 2.1. The TSP concentration in monitoring positions

The chart of TSP concentration at the monitoring points shows that there is a small difference of TSP at positions and monitoring results are smaller than allowed standard. The highest TSP value is at K3 (156 μ g/m³) following by K2. The smallest of TSP values are at K5 (133 μ g/m³).

Comparing with result that measured in last year, these values measuring in this month increase insignificantly, however, they still are smaller than allowed standard.

* SO₂

The monitoring results of SO₂ concentration in ambient air are indicated in **Figure 2.2** below:

The chart above shows that SO₂ concentrations at all monitoring points are smaller than the allowed standard. There is not much difference of SO₂ concentrations at different points. The highest SO₂ concentration is at K3 (103.2 μ g/m³), following by K1, K5 and K2. The lowest SO₂ concentration is at K4 (84.3 μ g/m³).

Comparing with the last year results, there is no significant difference.

Figure 2.3. The chart of NO₂ concentration at monitoring points

The chart shows that the NO₂ concentrations at all monitoring positions are smaller than allowed standard. K3 has the highest NO₂ concentration with value is 75.7 μ g/m³.

Thus, ambient air environment in the area of Mong Duong 2 BOT Coal Fired Power Plant is not polluted by parameters TSP, SO₂, NO₂, CO, PM10, PM2.5.

Besides basis parameter in ambient air, in August 2024, the plant also monitors parameters of greenhouse gases in K1: Plant area near coal store. Measured results were shown in Table 2.3:

No	Parameters	Timo	Unite	Results	
		Time	Units	K1	
1.	CO ₂	14h-16h	mg/m ³	1333.1	
2.	CH ₄	14h-16h	mg/m ³	1.675	
3.	N ₂ O	14h-16h	$\mu g/m^3$	0.637	

Table 2.3. Measured parameters of greenhouse gases

These greenhouse gases monitoring parameters will be monitored periodically to monitor the evolution of greenhouse gases in the area, which is also an attempt by the plant to monitor the environmental quality due to the long-term impact of plant operations to the surroundings.

II.1.2. Air emission

Air emission samples in the monitoring time in August 2024 were taken at 02 points in the stack after exhaust treatment systems line 1 and line 2. At the time of monitoring, stack of line 1 operated normally with a capacity of 365 MW, stack of line 2 operated normally with a capacity of 357 MW. Emission monitoring results are compared with QCVN 22:2009/BTNMT column B. Results is in **Table 2.4 and Table 2.5** as follows:

ТТ	Thông số	Đơn vị	Phương pháp quan trắc và			MDPCL- EHS-SP-		QCVN22:2009 /BTNMT	
			phân tích	S1.1	S1.2	S1.3	02-006	C _(Cột B)	C _{max}
1.	Nhiệt độ	°C	SOP-KT.01	72	72	72	-	-	-
2.	Bụi tổng	mg/Nm ³	EPA Method 5	16,0	18,3	17,7	50	200	112
3.	SO ₂	mg/Nm ³	EPA Method 6	44,5	47,1	44,5	280	500	280

Table 2.4. Results of air emission monitoring of stack of line 1, August 2024
4.	СО	mg/Nm ³	TCVN 7242:2003	<10	<10	<10	900	1.000(*)	640 ^{*)}
5.	NO _x (tính theo NO ₂)	mg/Nm ³	EPA Method 7	438,3	496,7	430,8	560	1.000	560

Tahle 2.5	Results of	air emission	monitoring o	f stark r	of line 7Δ	uoust 2024
1 abic 2.5.	ICourts of		monitoring o	i stath (<i>f</i> inc <i>2</i> , <i>1</i>	Lugust 2024

ТТ	Thông số	Đơn vị	Phương pháp quan trắc và	Kết quả			MDPCL- EHS-SP-	QCVN2 /BTN	2:2009 MMT
			phân tích	S2.1	S2.2	S2.3	02-006	C _(Cột B)	C _{max}
1.	Nhiệt độ	°C	SOP-KT.01	71	71	71	-	-	-
2.	Bụi tổng	mg/Nm ³	EPA Method 5	21,7	22,8	21,6	50	200	112
3.	SO_2	mg/Nm ³	EPA Method 6	65,4	94,2	65,4	280	500	280
4.	СО	mg/Nm ³	TCVN 7242:2003	<10	<10	<10	900	1.000(*)	640 ^{*)}
5.	NO _x (tính theo NO ₂)	mg/Nm ³	EPA Method 7	442,1	436,5	492,9	560	1.000	560

Air emission monitoring results shown that all the parameters' values are lower than the permitted Vietnamese standards **QCVN 22:2009/BTNMT** and plant standard **MDPCL-EHS-SP-02-006**. Like the previous monitoring times, environmental treatment systems for dust emissions included air handling systems and NO₂ treatment by selective catalytic reduction (SCR) and electrostatic precipitators (ESP) and SO₂ treatment device by desulphurization system (FGD) are working well and high efficiently.

Besides basis parameters are measured quarterly, in August 2024, the plant carried out to monitor Hg and its compounds parameter in air emission program. Measured result is shown in **Table 2.6**.

No	Parameters	Unit	Analytical methods	Results			
	Stack of line 1			S1.1	S1.2	S1.3	Average
1.	Hg and compound calculated in Hg	mg/Nm ³	EPA Method 29	< 0.001	< 0.001	< 0.001	<0.001
	Stack of line 2			S2.1	S2.2	S2.3	Average
2.	Hg and compound calculated in Hg	mg/Nm ³	EPA Method 29	<0.001	<0.001	< 0.001	<0.001

Table 2.6. Hg and compound (calculated by Hg)

At present, there is no national technical regulation on the permissible limits of mercury in the exhaust gases, especially for the thermal power plant, but periodic monitoring of the release of mercury into the environment is necessary and is an effort of plant in environmental monitoring program. In turn, the Hg concentation data in the exhaust gas will be updated periodically to monitor the occurrence of pollution of this parameter over time.

II.1.3. Noise and Vibration

Noise and vibration were measured at the different points in the plant see table below:

TT	Vị trí	X	Y
N1, V1	Unit 1 area – pump for boiler – 1 st floor – turbine building	2331206	458244
N2, V2	Unit 1 area – compressor – 1 st floor – turbine building	2331206	458244
N3, V3	Unit 2 area – pump for boiler – 1 st floor – turbine building	2331005	458247
N4, V4	Unit 2 area – compressor – 1 st floor – turbine building	2331207	458244
N5, V5	Unit $1 - 2^{nd}$ floor area – turbine building	2331215	455112
N6, V6	Unit $2 - 2^{nd}$ floor area – turbine building	2331132	458152
N7, V7	Unit $1 - 3^{rd}$ floor area – turbine building	2331198	458299
N8, V8	Unit $2 - 3^{rd}$ floor area – turbine building	2331174	458153
N9, V9	Ball mill area – Unit 1 – 1 st floor – coal crusher area	2331141	458294
N10, V10	Ball mill area – Unit 2 – 1 st floor – coal crusher area	2331164	458177
N11, V11	Hopper pouring, heater ash hopper of Unit $1 - 1^{st}$ floor – Boiler building	2331075	458294
N12, V12	Hopper pouring, heater ash hopper of Unit $2 - 1^{st}$ floor – Boiler building	2331073	458169
N13, V13	Hopper pouring area of Unit 1 – 2 nd floor – electrostatic precipitator area	2331031	458360

Table 2.7. The monitoring points of noise (N) and vibration (V)

N14, V14	Hopper pouring area of Unit $2 - 2^{nd}$ floor - electrostatic precipitator area	2331053	458164
		0001050	450252
N15, V15	Compressor -1^{st} floor $-$ electrostatic	2331053	458253
	precipitator area		
N16, V16	Circulating pump and oxygen pump –	2330949	458241
	FGD absorption tower of Unit 1		
N17. V17	Circulating pump and oxygen pump –	2330949	458210
	FGD absorption tower of Unit 2	200010	100210
N18, V18	Exhaust gases dryer including under shaft	2330976	458241
	bearing and upper shaft bearing of Unit 1		
	– FGD and absorption tower area		
N19, V19	Exhaust gases dryer including under shaft	2330978	458137
	bearing and upper shaft bearing of Unit 2		
	– FGD and absorption tower area		
N20 V20	Smoke fan area of ground floar of Unit 1	2330064	158281
IN20, V20	Shoke fail area of ground floor of Ohn 1 –	2330904	436261
	FGD and absorption tower area		
N21, V21	Smoke fan area of ground floor of Unit 2 –	2331116	458114
	FGD and absorption tower area		
N22, V22	Pump – Plaster building	2330956	458241
		2220074	459241
N23, V23	Vacuum conveyor filter – 3rd floor –	2330974	458241
	plaster building		
N24, V24	Silo 1 – Area of slag silo at the bottom of	2331115	458333
	furnace		
N25, V25	Silo 2 - Area of slag silo at the bottom of	2330915	458092
	furnace		
N26 V26	Excavator – coal warehouse	2330727	458032
1120, 120	Excavator coar warehouse	2550727	430032
N27, V27	Coal dividing machine of Unit 1 – Coal	2331166	458241
	warehouse		
N28, V28	Coal dividing machine of Unit 2 – Coal	2331165	458137
	warehouse		
N29. V29	Coal scraper – Coal warehouse	2330738	457721
1127, 127	Courseraper Courwarenouse	2330130	<i>тЈ </i> 21

The noise measurement results are shown in the following chart:

Figure 2.4. The chart of noise at the monnitoring points in or out of the plant

Based on above graphs, almost noise positions (N1 - N29) have rather high noise level because these positions are the noise sources. The plant has issued the technical procedure for noise minimization in order to protect labours. All the positions with high noise level (>85 dBA) are warning with protective equipment for labour avoiding the hearing hurt.

Figure 2.5. The chart of vibration at the monnitoring points in or out of the plant

Based on the above graph, at some point as V18, V19, V27, V29 with high level of vibration due to these positions are vibration sources. The plant has issued the technical procedure for vibration minimization to protect labour out of exposure to vibration for long time. The plant also has a plan for periodical maintenance the equipment in order to reduce the sources of noise and vibration.

II.1.4. Water environment

Water samples are monitored including wastewater, surface water, coastal water, and detailed water sampling locations as **Table 2.8** below:

Table 2.8. The points of water sampling 109th environmental monitoring

Environmental	No	Location	X	Y
Aspect				
WATER ENVIR	RONMEN	NT		
Cooling water	CW1	Intake point of cooling	21°04'32.6"N	107°21'18.5"E
(3 positions)		water		
	CW2	Discharge point into the	21°04'28.3"N	107°20'57.1"E
		cooling water channel		
	CW3	Discharge point to	21°04'42.4"N	107°21'03.1"E
		common Mong Duong	2331698	458326
		Power complex channel		
Industrial waste	WW1	Discharge point into the	21°04'31.1"N	107°21'04.4"E
water		Cooling water channel	2331338	458360
Sanitary	SH1	Admin area	21°04'39.6''N	107°21'07.8"E
wastewater			2331603	458369
	SH2	Chemical dosing building	21°04'28.7"N	107°21'09.6"E
			2331391	458375
	SH3	Coal warehouse area	21°04'11.5"N	107°20'56.5"E
			2331262	458175
Surface water	MD1	Tran bridge (Zone 4,	21°05'43.1"N	107°22'50.4"E
		Mong Duong ward)		
	MD2	Mong Duong bridge	21°04'48.3"N	107°21'04.4"E
	MD3	Area where conveyor	21°05'12.8"N	107°22'42.7"E
		transfers coal to factory		
	MD4	Estuary where riverruns	21°03'48.0"N	107°19'26.7"E
	CW12	into Luong Gac canal	21002'51 5"N	107°20'50 6"E
	SW12	Cooling water canal head	21 05 31.3 N	107 20 30.0 E
	SW13	Behind cooling water	21°04'07.8"N	107°21'00.8"E
		outlet of Mong Duong 1		

		Thermal Power Plant		
	SW14	Behind cooling water	21°04'25.3"N	107°21'41.0"E
		outlet of Mong Duong 2		
		BOT Coal Fired Power		
		Plant		
	SW15	Cooling water channel	21°04'39.5"N	107°20'40.6''E
	SW16	Cooling water channel	21°04'43.4"N	107°20'50.9"E
Coastal water	SW2	SW2	21°05'17.4"N	107°23'07.2"E
	SW3	SW3	21°03'41.8"N	107°22'35.2"E
	SW4	SW4	21°04'08.9"N	107°22'02.9"E
	SW5b	SW5b	21°04'45.6"N	107°22'11.5"E
	SW6	SW6	21°03'05.7"N	107°22'14.6"E
	SW7	SW7	21°03'12.3"N	107°22'49.0"E
	SW8	SW8	21°05'42.5"N	107°22'16.0"E
	SW9	SW9	21°05'31.0"N	107°22'36.2"E
	SW10	SW10	21°04'59.0"N	107°22'36.3"E
	SW11	SW11	21°03'49.2''N	107°22'09.2"E
	SW18	SW18	21°04'33.7"N	107°21'21.3"E
	SW19	SW19	21°04'33.5''N	107°21'42.5"E

Evaluating the results of environmental monitoring of water as the following sections:

II.1.4.1. Wastewater

Wastewater of the plant in the 109th monitoring program includes 03 samples of cooling water, 03 samples of sanitary wastewater and 01 of industrial wastewater.

a. Industrial wastewater

The influent industrial wastewater includes irregular wastewater, regular wastewater, and oil contaminated wastewater. The capacity of industrial wastewater treatment system is

110 m³/h. The sample WW was taken at the discharge point into the cooling water channel. At the monitoring time, the industrial wastewater treatment system operates normally. The detailed monitoring points are below:

WW: From discharge point to cooling water chanel

The result shows that all the parameters of industrial wastewater are lower than QCĐP 3:2020/QN column B and QCVN 40:2011/BTNMT column B. Comparing with the GVC-AES-TKV - Standards of BOT Mong Duong 2 BOT Coal Fired Power Plant about permitted limit of industrial wastewater, all parameter meet allowed standard. This demonstrates that the industrial wastewater treatment system works extremely well.

b. Cooling water

In order to estimate the quality of cooling water supply for plant and also discharging cooling wastewater, cooling water was taken at 03 positions at 03 intake points of cooling water, discharge point into the cooling water channel and discharge point to common Mong Duong power complex channel. The detailed positions:

- CW1: Intake point of cooling water
- CW2: Discharge point into the cooling water channel
- CW3: Discharge point to common Mong Duong Power complex channel

According to the design of cooling water system as well as the characteristics of the cooling water, two parameters that need to be tightly controlled are temperature and residual chlorine. In addition, the quality of the cooling wastewater is compared with QCĐP 3:2020/QN - Local technical regulation on industrial wastewater in Quang Ninh province and QCVN 40:2011/BTNMT - National technical regulation on industrial wastewater. Due to the characteristics of the cooling water does not contain many polluted factors so the monitoring results therefore also reflect the fact that the monitoring parameters are achieved strictly allowed standard of the plant -GVC-AES-TKV- Standards of BOT Mong Duong 2 BOT Coal Fired Power Plant of the permitted limit value of cooling water. Monitoring the temperature of the cooling water after discharging into the environment is also quite important to ensure that the cooling water does not affect the aquatic environment.

Figure 2.6. The chart of Temperature in cooling water samples

c. Sanitary wastewater

Sanitary wastewater included 3 samples points.

- SH1: Sanitary wastewater in admin area.
- SH2: Sanitary wastewater in Chemical dosing building.
- SH3: Sanitary wastewater in coal warehouse area.

Figure 2.7. The chart of Amonium in sanitary wastewater

Based on the graph, the ammonium concentration in all positions are much lower than standard of the plant TCSAES-TKV Standards of BOT Mong Duong 2 BOT Coal Fired Power Plant and QCVN 14:2008/BTNMT.

II.1.4.2. Surface water

Surface water samples arounding the plant area of Mong Duong 2 BOT Coal Fired Power Plant includes 09 samples that were taken at detailed positions as in **Table 2.8**.

Surface water samples were taken mainly on the cooling channels; thus, the Temperature factor is quite important, the Temperature of the surface water samples are illustrated in **Figure 2.8** below:

Figure 2.8. The chart of Temperature in surface water samples

The highest temperature of the surface water samples is at 36.3°C and the lowest temperature of the surface water samples is 27.4°C.

Besides the monitoring results of surface water samples also showed that most of the parameters values are smaller than allowed standards many times, however some positions have the higher concentration Ammonium than allowed standard (see chart Figure 2.9, Figure 2.10 below).

Figure 2.9. Ammonium concentration in surface water samples

The chart shows that all positions having higher Ammonium concentration than the allowed standard. In particular, the Ammonium concentration at SW14, SW15 and SW16 are higher 2.2 times, 2.0 time and 2.5 times than allowed standard.

Figure 2.10. Coliform concentration in surface water samples

Above figure shown all the surface water position with lower concentration in coliform in comparison to the standard. However, it's necessary to to continuely monitor the fluctuation of coliform concentrations in next quarters.

II.1.4.3. Coastal water

There are 12 coastal water samples in 109th monitoring time (August 2024) and these samples showed detaily in **Table 2.8**

The results of monitoring showed that most of the parameters in coastal water are smaller than the allowed standards except ammonium.

Figure 2.11. The chart of Ammonium concentration in coastal water

The above figure shows all positions with higher than standards of QCVN 10:2023/BTNMT in ammonium concentration. In which, SW2, SW3, SW6, SW10, SW19 as 0.29 mg/L, 0.31 mg/L, 0.32 mg/L, 0.31 mg/L and 0.30 mg/L, respectively, higher than the standard of 2.9 times, 3.1, 3.2,3.1 and 3.0 times.

II.2. ASH POND 2

II.2.1. Wastewater

A part of wastewater from ash pond is collected and recycle to plant with max volume is about 200 m³/h. It is re-used for collecting ash from bottom, processing concentrated sludge and ash discharging system. It isn't discharged directly to water resource. The

construction which collects wastewater from ash pond cyclically includes water collecting hole and cyclic pump.

Another part comes through wastewater treatment system that includes sedimentation tank using flocculation compound. After treating, wastewater is discharged to Thac Thay river. In this monitoring time, 02 wastewater samples were sampled one sample in treatment tank and one sample after treated

Wastewater positions is as follow:

- AP-W1: Wastewater from AP2 Reservoir
- AP-W2: Output of wastewater treatment system Ash pond 2

The monitoring results are showed in Table 2.9

NT		TT •4		Res	ults	QCĐP 3:	2020/QN
No.	Parameters	Unit	Analytical methods	AP-W1	AP-W2	C(Column B)	Cmax
1.	Temperature	°C	SMEWW 2550B:2023	32.4	32.1	40	40
2.	pН	-	TCVN 6492:2011	7.5	7.4	5.5 - 9.0	5.5 - 9.0
3.	Color (pH=7)	Pt/Co	TCVN 6185:2015	<5	<5	150	150
4.	TSS	mg/L	TCVN 6625:2000	13	11	100	90
5.	COD	mg/L	SMEWW 5220C:2023	19	9	150	135
6.	BOD ₅	mg/L	SMEWW 5220C:2023	9	5	50	45
7.	Arsenic (As)	mg/L	EPA method 200.8	0.0030	< 0.0015	0.1	0.09
8.	Mercury(Hg)	mg/L	EPA method 200.8	< 0.0005	< 0.0005	0.01	0.009
9.	Lead (Pb)	mg/L	EPA method 200.8	< 0.002	< 0.002	0.5	0.45
10.	Cadmium (Cd)	mg/L	EPA method 200.8	< 0.0005	0.0006	0.1	0.09
11.	Chromium III	mg/L	EPA Method 200.8 & SMEWW 3500- Cr.B.2023	0.014	0.014	1	0.9
12.	Chromium VI	mg/L	SMEWW 3500- Cr.B.2023	< 0.003	< 0.003	0.1	0.09
13.	Copper (Cu)	mg/L	EPA method 200.8	0.002	0.003	2	1.8
14.	Zinc (Zn)	mg/L	EPA method 200.8	< 0.005	< 0.005	3	2.7
15.	Nikel (Ni)	mg/L	EPA method 200.8	0.017	0.018	0.5	0.45
16.	Manganese (Mn)	mg/L	EPA method 200.8	0.076	0.026	1	0.9
17.	Iron (Fe)	mg/L	EPA method 200.8	1.2	1.2	5	4.5
18.	Total mineral oil & grease	mg/L	SMEWW5520B&F:2023	<1.0	<1.0	10	9
19.	Residue Chlorine	mg/L	TCVN 6225-3:2011	1.7	1.7	2	1.8
20.	Sulfide (as H ₂ S)	mg/L	SMEWWS ²⁻ B&D:2023	< 0.03	< 0.03	0.5	0.45

Table 2.9. Wastewater results in ash pond 2

Bach Khoa Environmental Amicable Technology, jsc. (BKEST)

No	Davamataus	I.I.n.it	t Analytical methods Result		ults	QCĐP 3:2020/Q	
190.	rarameters	Umt	Analytical methods	AP-W1	AP-W2	C(Column B)	2020/QN Cmax 36 5.4 9 9 0.09 0.45 5,000
21.	Total N	mg/L	TCVN 6638:2000	3.5	3.5	40	36
22.	Total P	mg/L	TCVN 6202:2008	0.10	0.09	6	5.4
23.	Ammonium (NH4 ⁺)	mg/L	SMEWW 4500 NH3.B&F:2023	0.10	0.09	10	9
24.	Fluoride (F ⁻)	mg/L	SMEWW 4500-F ⁻ .B&D:2023	6.16	6.69	10	9
25.	Total Cyanide (CN ⁻) ^(*)	mg/L	SMEWW 4500 CN ⁻ C&E:2017	< 0.004	< 0.004	0.1	0.09
26.	Total Phenol	mg/L	SMEWW 5530 B&C:2023	< 0.001	< 0.001	0.5	0.45
27.	Coliform	MPN/ 100mL	SMEWW 9221B:2023	330	220	5,000	5,000

The monitoring results show that all of monitoring parameters in wastewater meet allowed standard QCĐP 3:2020/QN. However, Fluoride parameter for recently monitoring times with increasing concentration nearly level of QCĐP 3:2020/QN. I's recommended to continue monitor the fluoride concentration in Ash pond 2 wastewater.

II.2.2. Noise

The noise was measured at the wastewater treatment system of ash pond 2 - Mong Duong 2 BOT Coal Fired Power Plant.

The monitoring results are showed in Table 2.10:

			Results						
No.	Sampling	Measurement	6h-	-21h	21h	-6h			
	positions	methods	Leq	Lmax	Leq	Lmax			
			(dBA)	(dBA)	(dBA)	(dBA)			
1.	AP2-N	TCVN 7878-2:2010	58	63	52	55			
	QCVN 26:20	10/BTNMT	70	-	55	-			

 Table 2.10. Noise results in ash pond 2

The measurement results of noise at the wastewater treatment system location shown that all values met the permissible standard of QCVN 26:2010/BTNMT.

Within the the wastewater treatment system area of ash pond 2, the noise is detected from personnel movement and operation of the treatment system in the treatment station area. Although the values did not exceed the standard, noise control must be continuously maintained. The measured values were only instantaneous, and noise measurement should be conducted more frequently to have timely preventive and mitigation measures.

II.3. HOUSING COLONY

Monitoring results of domestic wastewater

Samples of domestic wastewater are taken before and after the treatment system. The monitoring results in August 2024 show that all parameters met QCVN 14: 2008 / BTNMT

				Res	sult	QCVN 2008/BT	14: NMT
No.	Parameters	Unit	Analytical methods	HS- NT1	HS- NT2	C (Column B)	14: NMT Cmax - 5.0- 9.0 1,000 100 50 4.0 10 50 10 50 10 20
1.	Temperature	°C	SMEWW 2550B:2023	30.5	31.6	-	-
2.	pН	-	TCVN 6492:2011	7.8	7.3	5.0-9.0	5.0– 9.0
3.	TDS	mg/L	SOP-TDS	358	315	1,000	1,000
4.	TSS	mg/L	TCVN 6625:2000	17	10	100	100
5.	BOD ₅	mg/L	SMEWW 5210B:2023	48	7	50	50
6.	Sulfide (as H ₂ S)	mg/L	SMEWW 4500S2- .B&D:2023	< 0.03	< 0.03	4.0	4.0
7.	Ammonium (NH4 ⁺)	mg/L	SMEWW 4500 NH ₃ .B&F:2023	5.65	0.7	10	10
8.	Nitrate (NO ₃ ⁻ - N)	mg/L	SMEWW 4500 NO ₃ ⁻ E:2023	< 0.06	6.85	50	50
9.	Phosphate (PO ₄ ³⁻ -P)	mg/L	TCVN 6202:2008	7.2	1.66	10	10
10.	Surfactant ^(*)	mg/L	SMEWW 5540B&C:2017	< 0.015	<0.015	10	10
11.	Animal Oil & Grease	mg/L	SMEWW 5520B&F:2023	<1.0	<1.0	20	20
12.	Coliform	MPN/ 100mL	SMEWW 9221B:2023	630	270	5,000	5,000

Table 2.11. The monitoring results of domestic wasewwater in Housing colony

The results indicate that all parameters are smaller than allowed limit of QCVN 14:2008/BTNMT.

CHAPTER III. CONCLUSION AND RECOMMENDATION

III.1. Conclusion

The 109th Environmental monitoring program in operation stage of Mong Duong 2 BOT Coal Fired Power Plant was conducted in August 2024, the sampling locations were approved according to plan, the environmental monitoring factors includes: environment ambient air, noise, vibration, air emission, industrial wastewater, surface water, coastal water, cooling water. Based on the results of environmental monitoring, the assessment of environmental quality in the area of the plant in operation stage as follows:

Noise

Noise level at 29 noise sources in the plant were rather high. The plant has issued the solution to protect labour working at 2-unit area.

The noise values at 05 locations in the plant's area and in the surrounding residential areas were satisfied with the specified standards: QCVN 26:2010/BTNMT.

Ambient air

Ambient air quality surrounding the plant area is relatively good. The parameters such as TSP, PM10, PM2.5 gases such as CO, SO₂, and NO₂ were meet QCVN 05:2023/BTNMT. Especially, dust levels at the locations near transportation road are needed to monitor more often because of the transportation affecting. It should be noted more about dust levels at the locations near roads or the construction areas of the plant. Also note the location near transportation of fuel to take monitoring to control these indicators by transport activity and freight.

Vibration

Some positions of V18, V19, V27, V29 within 29 vibration have high value in vibration due to these points are the source of vibration. The plant has the solution to protect labour working at the 2-unit operation area.

Air emission

Monitoring results shown that all the parameter values in air emission are lower than the standard, QCVN 22:2009/BTNMT, this proves that exhaust treatment system is still operating stability and efficiency.

Wastewater

Wastewater of the plant in the 109th monitoring time includes 01 industrial wastewater sample. In which, parameters of industrial wastewater are smaller than allowed standard (QCĐP 3:2020/QN and QCVN 40:2011/BTNMT), and GVC-AES-TKV: The

standard of Mong Duong 2 BOT Coal Fired Power Plant about permitted limit of industrial wastewater.

Cooling water

Monitoring results of the cooling water samples showed that all the monitoring parameters are allowed to the standards of QCDP 3:2020/QN and QCVN 40:2011/BTNMT and GVC-standard AES-TKV- Standards of BOT Mongduong Thermal power plants of the permitted limit value of cooling water.

Sanitary wastewater

Monitoring results of the sanitary wastewater samples showed that all the monitoring parameters are allowed to the standards of the plant TCSAES-TKV Standards of BOT Mong Duong 2 BOT Coal Fired Power Plant and QCVN 14:2008/BTNMT.

Surface water

During the construction stage, the surface water sampling locations previously were filled (De Dach River and a branch flowing to Mong Duong estuary). Therefore, in this operation stage, the survey team has selected some new positions for surface water monitoring; see the tables in the report. The surface water sampling locations in Mong Duong estuary and Luong Gac canal are remain the same quantity.

The quality of surface water around plant is polluted by some parameters. According to the 109th monitoring results, in some surface water samples in the estuary discharging into Luong Gac canal, Ammonium concentration exceed permitted standards due to human activities. Therefore, surface water quality in the plant area can be directly affected by discharging source from outside of the plant or due to human activities. Therefore, it should recommend that people must careful in the using of this water source or have the treatment methods when using this source.

The coastal water

The 109th monitoring program in August 2024 has 12 coastal water samples to evaluate the coastal quality. Monitoring results showed that most parameters in coastal water samples meet allowed standard. Except that Ammonium concentration exceed permitted standards due to human activities.

The 37th environmental monitoring program in operation stage of ash pond 2 was conducted at the middle of August 2024, the sampling locations were approved according to plan, the environmental monitoring components includes: wastewater and noise. Based on the results of environmental monitoring, the assessment of environmental quality in the area of the plant in operation stage as follows:

Wastewater

Wastewater of the ash pond 2 includes wastewater samples in treatment tank, neutralization tank and samples after treatment. The results shown that all parameters met QCĐP 3:2020/QN.

Noise

At the monitoring location, the noise level meets the permissible standard of QCVN 26:2010/BTNMT. However, in the area where workers operate the system, they must be fully equipped with personal protective equipment and noise reduction devices such as helmets and earplugs

The environmental monitoring program in housing colony area was conducted at August 2024, the sampling locations were approved according to plan, the environmental monitoring components include: wastewater. Based on the results of environmental monitoring, the assessment of environmental quality in the area of the plant in operation stage as follows:

Sanitary wastewater

Monitoring results of the sanitary wastewater samples showed that all the monitoring parameters are allowed to the standards of QCVN 14:2008/BTNMT.

III.2. Recommendation

Based on the monitoring results of the 109th (August 2024) monitoring time in operation stage in Mong Duong 2 BOT Coal fired power plant, the monitoring team and implementing units give some recommendations to the management board of Mong Duong 2 BOT Coal Fired Power Plant and the contractor at the plant as follows:

Continue implementation of environmental monitoring activities periodically with the noise component, ambient air, emissions, wastewater, surface water, ground water, ecological environment according to plan, the roadmap setting out in the region during the operation stage of Mong Duong 2 BOT Coal Fired Power Plant. This is to detect early signs of environmental pollution due to the impact of the plant through each stage or other events affecting the region.

Continue and expand the assessment of the impact of plant's operations to the surrounding residential area. Especially we should focus on evaluating expansion and more detailed assessment of environmental ambient air, surface water area. Study and estimate the impact of 2 plants to people's living. Beside the influence of environment, it is need to assess the social impact on population in Mong Duong 2 BOT Coal Fired Power Plant area.

Providing updated information about the environment for the local area and building contractors to have plans for dealing with pollution as well as minimize the polluting activity to the regional environment.

APPENDIX

APPENDIX 1. APPLICATION OF QA/QC IN MONITORING PROGRAM APPENDIX 2. IMAGES OF MONITORING ACTIVITIES ON FIELD APPENDIX 3. MAP OF SAMPLING AREAS APPENDIX 4. THE MONITORING RESULTS

APPENDIX 1. APPLICATION OF QA/QC PROGRAM FOR ENVIRONMETAL MONITORING IN MONG DUONG 2 BOT COAL FIRED POWER PLANT AND ASH POND 2

Applying QA/QC program for environmental monitoring Mong Duong 2 and ash pond 2 in August 2024

1. QA/QC in the design of environmental monitoring program

Activities to ensure quality in the design of environmental monitoring program for Mong Duong 2 BOT Coal Fired Power Plant are summarized in **Table 4.1** follows (compare current status with the requirements of Circular 10/2021/TT-BTNMT on 30/6/2021, Ministry of Natural Resources and Environment guiding the quality assurance and quality control in environmental monitoring).

No.	Activities	Current status in comparison to the requirements of Circular 10	Note
1	Determine the objectives	+	
	of monitoring program		
2	Design the environmental monitoring program	+	Monitoring in ambient air, air emission, noise, cooling water, wastewater in the plant, AP2 and houssing colony, surface water around area
2.1.	Compliance with environmental protection programs and national strategies	+	
2.2.	To comply with the technical guidance, procedures and regulations for each environmental component	+	Circular 10/2021/TT- BTNMT of Ministry of Environment and Resources: Technical Regulation on environmental monitoring

Table 4.1. Summary of quality assurance activities in the design ofenvironmental monitoring program in Mong Duong 2 Power Plant

2.3.	Follow all steps in design	+	
	environmental monitoring		
	program		
Note:	(+) full	(-) not enoug	h

Note:

(-) not enough

2. QA/QC on field monitoring

The activities on field can be classified as follows:

- \checkmark QA/QC in direct measurement on field (this activity can be operated independently out of other activities);
- ✓ QA/QC in sampling, sample pretreatment, samples preservation;

In this environmental monitoring program for Mong Duong 2 Power Plant and ash pond 2, QC samples were carried out include: On field blank sample (code: OCHT). This is defined as the small sample of handled clean material, which is stored, transported and analyzed in laboratory similar to real samples. These QC samples are used to control contamination in the sampling process.

On-field blanks for ambient air are SO_2 and NO_2 (24h)

On-field blanks for wastewater are COD and TSS.

 \checkmark QA/QC in transporting samples to the laboratory

QC sample was choosen transportation blank sample (code: QCVC). QCVC is a small sample of the clean material transporting and researching with true samples in the same environment, the preservation and analysis of laboratory parameters as true sample. This QC sample types are used to control contamination during transporting samples.

Transportation blanks sample for ambient air are: SO₂ and NO₂ (24h)

Transportation blanks sample for waste water: TSS and COD

QC sample at the laboratory (code: QCPTN) is replicate analyzed for the same above parameters.

Activities to quality assurance in the field of monitoring are summarized in Table 4.2 follows:

Table 4.2. The current status of quality assurance and quality con	trol
activities on field (Mong Duong 2 BOT Coal Fired Power Plant	:)

No.	Activities	Current status in comparison to the requirements of Circular 10	Notes	
1	Environmental Monitoring on field	+	Followed the plan	
1.1.	Determination of environmental parameters	+	Represent for each environmental component, based on proposed report of EIA	
1.2.	Analytical method	+	Current Vietnamese standards (TCVN)	
1.3.	On-field environmental facilities and equipment	+	Periodically maintenance and calibration	
1.4.	Chemicals, standards	+	Prepare before going to the field	
1.5.	Personnel	+	Assign members of performing each items	
1.6.	Data processing and reporting	+		
1.7.	Quality control	_	Applied QC samples for 02 parameters of ambient air and 02 parameters in wastewater, not for all parameters.	
2.	Sampling, samples pre- treatment and preservation on	+	FollowedcurrentVietnamesestandards	
	field		(TCVN)	
2.1.	Quality assurance	+		

No.	Activities	Current status in comparison to the requirements of Circular 10	Notes	
2.1.1.	Determination of sampling site	+	Representative for the area, followed the surveyed results	
2.1.2.	Assurance of monitoring parameters	+	Followed the plan	
2.1.3.	Assurance of sampling time and frequency	-	Followed the plan, some changes in accordance to train schedule	
2.1.4.	Sampling methods, samples pre- treatment and preservation	+	FollowedcurrentVietnamesestandards(TCVN)	
2.1.5.	Equipment and instruments	+	Periodical maintenance and calibration	
2.1.6.	Personnel	+	Group work	
2.1.7.	Sample containers	+	Cleaned and sterilized	
2.1.8.	Chemicals	+		
2.1.9.	On-field sampling minutes	+		
2.2.	Quality control	-	Applied QC samples for 02 parameters of ambient air and 02 parameters in wastewater samples, not for all parameters	
3.	Sample transportation to laboratory	+		
3.1.	Quality assurance	+		
3.1.1.	Sample transportation	+		

Bach Khoa Environmental Amicable Technology, jsc. (BKEST)

No.	Activities	Current status in comparison to the requirements of Circular 10	Notes
3.1.2.	Sample delivery	+	Using delivery minute
3.2.	Quality control	-	Applied QC samples for 02 parameters of ambient air and 02 parameters in wastewater, not for all parameters

Notes: (+) full (-) not enough

3. Quality assurance and quality control (QA/QC) in laboratory

3.1. QA in laboratory

ISO/IEC 17025-2005 gives management requirements and technical requirements for the operation QA/QC laboratory. Here are the management requirements:

- 1. Organization.
- 2<u>. Quality system.</u>
- 3. Document control.
- 4. Review of requests, proposals and contracts.
- 5. Subcontracting of tests and calibrations.
- 6. Procurement services and supplies.
- 7. Service to customers.
- 8. Complaints (or suggestions).
- 9. Control testing and/or calibration mismatch
- 10. Remedies.
- 11. Precautions.
- 12. Control of records.
- 13. Internal assessment.
- 14. Review of leadership.

The technical requirements include:

- 1. General requirements.
- 2. Personnel.
- 3. Facilities and environmental conditions.
- 4. Test methods, calibration and approvedmethods.
- 5. Devices.
- 6. Traceability of measurement.
- 7. Sampling.
- 8. Sample managementand calibration.
- 9. Quality assurancetest resultsand calibration
- 10.Report the results.

Figure 4.1. QA/QC in lab (ISO/IEC 17025:2005)

No	Activities	Current statusin comparison to the requirements of Circular 10	Notes
4.	QA/QC at the laboratory	+	According to the laboratory regulations (ISO/IEC 17025 VILAS No 406 of R & D laboratory – Institute for Environmental Science and Technology)
4.1.	Management requirement	+	-as above-
4.1.1.	Determine the laboratory organization, appoint the duty and responsibility for each staff	+	-as above-
4.1.2.	Document system	+	-as above-
4.1.3.	Internal evaluation	+	-as above-
4.1.4.	Periodical review the quality management system and laboratory operation to ensure the effectiveness and continuous	+	-as above-
4.2.	Technical requirement	+	-as above-
4.2.1.	Quality assurance (analytical method, method selection, and method approval)	+	-as above-
	Facilitiesandequipment(calibration, labelling, maintenance)	+	-as above-
	Inter-laboratory comparison	+	-as above-
	Environmental condition	+	-as above-

Table 4.3. The current status of quality assurance and quality control activities at the laboratory

No	Activities	Current statusin comparison to the requirements of Circular 10	Notes
	Sample management	+	-as above-
	Data quality assurance	+	-as above-
4.2.2.	Quality control	+	-as above-
	Using QC samples	+	-as above-
	Develop the QC accepted criteria	+	-as above-
5.	QA/QC in data processing and reporting	+	-as above-
5.1.	Environmental Monitoring data processing and management	+	Using software issued by Ministry of Natural resources and environment
5.1.1.	Documents related to monitoring process needed to update	+	According to the laboratory regulations (ISO/IEC 17025 VILAS No 406 of R & D laboratory – Institute for Environmental Science and Technology)
5.1.2.	Store all document related to monitoring process	+	Followed the form issued by Ministry of Natural Resources and Environment
5.1.3.	Check, calculate and process all data from the field and/or laboratory	+	According to the laboratory regulations (ISO/IEC 17025 VILAS No 406 of R & D laboratory – Institute for Environmental Science and Technology)
5.2.	Reporting	+	-as above-

No	Activities	Current statusin comparison to the requirements of Circular 10	Notes
5.2.1.	Phase report needed to ensure the accuracy and honest	+	-as above-
5.2.2.	Review the reports	+	-as above-
5.2.3.	Report submitting	+	Submit to client and save the data

b. (QC) in Lab

QC samples include:

- QC sample for equipment

- QC sample for methods: Selected the duplicates at the Lab with the SO₂ and NO₂ in the ambient air and COD and TSS in water.

QC sample types:

In this environmental monitoring program for Mong Duong 2 BOT Coal Fired Power Plant and ash pond 2 in August 2024, QC samples (blanks and duplicates) were carried out at all sampling sites with some parameters of ambient air and wastewater in parallel with true samples.

QC sample on field is included: On-fields blank sample (code: QCHT), transportation blank sample (code: QCVC), applied for 02 parameters of ambient air (SO₂, NO₂) and 02 parameters of water (COD, TSS). The analytical requirement for blank is less

than MDL (method detection limit) or LOD (Limit of detection). In case the result is higher than these levels, it is needed to analyze again to remove the error cause.

QC sample at the laboratory (code: QCPTN) is replicately analyzed for the same above parameters.

Results were calculated, compared, followed the formula:

RPD: Relative Percent Difference

$$RPD = \frac{|LD1 - LD2|}{[(LD1 + LD2)/2]} \times 100(\%)$$

In which:

- RPD: Relative Percent Difference
- LD1: first analytical result
- LD2: second analytical result (duplicate)

The requirement of dispersion level between duplicate and true samples is not over $\pm 20\%$ (expected quality target of the laboratory).

c. QC sample analytical results

On-field blank sample analytical results

The 109th environmental monitoring time (August 2024) conducted with 04 QC samples: On-field blank sample, transportation blank sample of 04 parameters: SO₂, NO₂, COD, TSS.

Type of sample	Code	SO ₂ (μg/m ³)		NO ₂ (μg/m ³)	
QCHT: on-		% value ≤5	% value ≥5	% value ≤ 5	% value ≥5
field blank	K1_0	100	0	100	0
samples	K5_0	100	0	100	0

Table 4.4. On-field blank samples (ambient air)

Type of	Cada	TSS (mg/L)	COD (mg/L)	
sample	Coue	% giá trị ≤3	% giá trị ≥3	% giá trị≤3	% giá trị ≥3
	MD3_0	100	0	100	0

Bach Khoa Environmental Amicable Technology, jsc. (BKEST)

QCHT: on-	CW2_0	100	0	100	0
field blank	SW2_0	100	0	100	0
samples	SW12_0	100	0	100	0

d. Duplicate sample analytical results

Selected QC samples were duplicates in Lab (QCPTN) with parameters of SO₂, NO₂ in ambient air and TSS, COD in water. In detail:

No.	Code	% RPD		
		SO ₂	NO ₂	
1.	K1	15.4	13.7	
2.	К3	14.2	12.8	

Table 4.6. % RPD of QC duplicate samples (ambient air)

 Table 4.7. % RPD of QC duplicate samples (water)

No		% RPD		
	Code	COD	TSS	
1.	MD3	12.5	16.5	
2.	CW2	14.7	15.6	
3.	SW2	11.3	16.4	
4.	SW12	13.7	14.5	

QA/QC activity was conducted fully as design in monitoring program; therefore, the above results shown rather good with the expected quality target of the laboratory within RPD $\pm 20\%$ (meet the requirements of the Lab).

e. Evaluation on completed monitoring data

Completed monitoring data is evaluated by percent of full data in comparison to the expected data in initial plan.

Formula using for percent of completed data as bellows:

$$C = \frac{V}{T} \times 100(\%)$$

In which:

- C: % of completed data

- V: number of acceptable samples

- T: total samples in beginning plan

Here $C \ge 95\%$ is acceptable.

In this monitoring program (August 2024), number of measurements of monitoring samples in the Mong Duong 2 BOT coal fired power plant area, there are 05 ambient air samples, 58 noise samples, 58 vibration sample, 03 cooling water samples, 01 industrial wastewater sample, 21 surface water samples, 06 emission samples, and 03 sanitary wastewater samples. Number of measurements of monitoring samples in the ash pond 2 area, there are 02 wastewater samples, 02 noise samples. Number of measurements of monitoring samples. There are total 161 planned samples.

Therefore:

$$C = \frac{V}{T} \times 100(\%) = \frac{161}{161} \times 100(\%) = 100\%$$

This result is ensured the completed data in this monitoring program of August 2024.

APPENDIX 2. IMAGES OF MONITORING ACTIVITIES ON FIELD

Figure 4.2. Measuring noise in plant area and taking air ambient samples

Environmental Monitoring report of Mong Duong 2 BOT Coal fired power plant – August, 2024

Figure 4.3. Sampling water in Mong Duong 2 BOT Coal Fired Power Plant

Figure 4.4. Sampling air emission in Mong Duong 2 BOT Coal Fired Power Plant

Figure 4.5. Taking surface wastewater samples and noise monitoring in the Ash pond 2

Figure 4.6. Sampling sanitary wastewater in the housing colony area

APPENDIX 3. MAP OF SAMPLING AREAS

Figure 4.7. Map of sampling areas

Figure 4.8. Map of monitoring surface water positions

Figure 4.9. Water sampling positions and noise monitoring

Figure 4.10. Wasewater sampling positions

APPENDIX 4: THE MONITORING RESULTS

SCHOOL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

http://inest.hust.edu.vn Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Fax: (84-24).38693551 Email: inest@hust.edu.vn Tel.: (84-24).38681686

No: 01/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Sampling Site	: Mor
Address	: Mor
Sampling Date	: 14-1
Type of Samples	: Aml
Number of Samples	: 05 s

ng Duong ward - Cam Pha city - Quang Ninh province ng Duong 2 BOT Coal Fired Power Plant

5/08/2024

oient air

amples

							Results			QCVN 05:
No.	Parameters	Time	Unit	Measurement methods	K1	K2	K3	K4	K5	2023/BTNMT
-	Tommernelline	8h-16h	J _o		29.4	29.1	29.7	30.7	30.2	I
	I Tumidity	8h-16h	%		94.1	94.7	93.8	89.4	90.7	1
· i c	Wind walconter	8h_16h	m/c	QCVN 46:2022/BTNMT	2.5	2.4	1.9	2.6	2.5	1
	Willd Velocity	8h-16h			SE	SE	SE	SE	E	I
ť.		6h 71h	AB.		66	63	65	58	53	$70^{(*)}$
5.	Noise Lea	011-2110 715 65	AR.	TCVN 7878-2:2010	55	52	54	49	47	55(*)
	Ired	1 hour	Nurve 1. a/m ³	TCVN 5971:1995	96.3	90.5	103.2	84.3	93.0	350
6.	SO_2	THOUL I	110/m3	MASA method 704A	67.0	62.1	63.0	57.9	60.0	125
		1 hours	111/211	TCVN 6137-2009	63.8	61.0	75.7	67.6	65.6	200
7.	NO2	10011 1	ug/m3	MASA method 406A	47.3	44.4	47.3	49.1	41.3	100
		1 hours	ug/111	SOP-CO	3084 1	3169.0	3508.0	3198.5	3370.6	30,000
<u></u>	CO	Inon 1	μ <u>κ</u> /111 110/m ³	SOP-PT-01	<3.000	<3.000	<3.000	<3,000	<3,000	I
C	TCD	24 hours	110/m ³	TCVN 5067:1995	139	148	156	136	133	200
10.	10L	STUDIT 74 hours	110/m3	AS/NZS 3580.9.6:2003	40.7	54.6	59.7	46.3	42.6	100
11.	FIMIU PM7 5 (**)	24 hours	ug/m ³	SOP-PM2.5	12.0	9.03	10.0	11.0	9.03	50
Note.	<u></u>									

The monitoring results were calculated at 25°C, 760 mmHg.

Notes:

The result is valid only for samples at the monitoring time.

The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

|--|--|

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Tel.: (84-24).38681686 Email: inest@hust.edu.vn

Fax: (84-24).38693551 http://inest.hust.edu.vn

No: 02/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Sampling Site	: Mong Duong 2 BOT Coal Fired Power Plant
Address	: Mong Duong ward - Cam Pha city - Quang Ninh province
Sampling Date	: 15/08/2024
Type of Samples	: Noise
Number of Samples	: 29 samples x 2 times per day (day time and night time)

: 29 samples x 2 times per day (day time and night time)

No Sampling positions	Measurement	Day time		Night time		
	methods	Leq (dB _A)	Lmax (dB _A)	Leq (dB _A)	Lmax (dB _A)	
1.	N1		97	100	95	99
2.	N2		98	103	96	100
3.	N3		94	98	92	96
4.	N4]	100	104	95	97
5.	N5		94	98	87	92
6.	N6		95	99	90	94
7.	N7		98	102	94	98
8.	N8		95	99	93	96
9.	N9		92	95	86	91
10.	N10		98	101	95	98
11.	N11		99	104	96	101
12.	N12		96	100	91	95
13.	N13	1. * * * * * · ·	88	94	85	88
14.	N14	TOWN	91	95	85	93
15.	N15	7878 2.2018	87	90	84	86
16.	N16	7070-2.2010	96	103	93	97
17.	N17		94	97	91	96
18.	N18		90	95	87	90
19.	N19	S.,	88	93	85	89
20.	N20		93	98	90	94
21.	N21		95	98	92	96
22.	N22		97	100	94	97
23.	N23		92	97	86	94
24.	N24		88	92	85	88
25.	N25		94	99	88	96
26.	N26		94	102	90	95
27.	N27		91	100	86	96
28.	N28		91	101	87	97
29.	N29		90	100	91	101

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer. 3.

Note:			
- Samp	ling positions:	Coord	inates
		X	Y
NI	Unit 1 area – pump for boiler – 1^{st} floor – turbine building	2331206	458244
N2	Unit 1 area – compressor – 1^{st} floor – turbine building	2331206	458244
N3	Unit 2 area – pump for boiler – 1^{st} floor – turbine building	2331005	458247
N4	Unit 2 area – compressor – 1^{st} floor – turbine building	2331207	458244
N5	Unit $1 - 2^{nd}$ floor area – turbine building	2331215	455112
N6	Unit $2 - 2^{nd}$ floor area – turbine building	2331132	458152
N7	Unit $1 - 3^{rd}$ floor area – turbine building	2331198	458299
N8	Unit $2 - 3^{rd}$ floor area – turbine building	2331174	458153
N9	Ball mill area – Unit 1 – 1^{st} floor – coal crusher area	2331141	458294
N10	Ball mill area – Unit $2 - I^{st}$ floor – coal crusher area	2331164	458177
N11	Hopper pouring, heater ash hopper of Unit $1 - 1^{st}$ floor – Boiler building	2331075	458294
N12	Hopper pouring, heater ash hopper of Unit $2 - 1^{st}$ floor – Boiler building	2331073	458169
N13	Hopper pouring area of Unit $1 - 2^{nd}$ floor – electrostatic precipitator area	2331031	458360
N14	Hopper pouring area of Unit $2 - 2^{nd}$ floor – electrostatic precipitator area	2331053	458164
N15	Compressor – 1 st floor – electrostatic precipitator area	2331053	458253
N16	Circulating pump and oxygen pump – FGD absorption tower of Unit 1	2330949	458241
N17	Circulating pump and oxygen pump – FGD absorption tower of Unit 2	2330949	458210
N18	Exhaust gases dryer including under shaft bearing and upper shaft bearing of Unit 1 – FGD and absorption tower area	2330976	458241
N19	Exhaust gases dryer including under shaft bearing and upper shaft bearing of Unit 2 – FGD and absorption tower area	2330978	458137
N20	Smoke fan area of ground floor of Unit 1 – FGD and absorption tower area	2330964	458281
N21	Smoke fan area of ground floor of Unit 2 – FGD and absorption tower area	2331116	458114
N22	Pump – Plaster building	2330956	458241
N23	Vacuum conveyor filter – 3rd floor – plaster building	2330974	458241
N24	Silo 1 – Area of slag silo at the bottom of furnace	2331115	458333
N25	Silo 2 - Area of slag silo at the bottom of furnace	2330915	458092
N26	Excavator – coal warehouse	2330727	458032
N27	Coal dividing machine of Unit 1 – Coal warehouse	2331166	458241
N28	Coal dividing machine of Unit 2 – Coal warehouse	2331165	458137
N29	Coal scraper – Coal warehouse	2330738	457721

QA/QC

W/

MSc. Ton Thu Giang

Ha Noi, September 09th, 2024 School of Environmental Science and Technology

VIỆN KHOA HỌC VÀ CÔNG NGHỆ MÕI TRƯỜNG TOC RÁCH KHON VIỆN TRƯỞNG PGS. TS. Nguyễn Chị Anh Cuyết

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Tel.: (84-24).38681686

Email: inest@hust.edu.vn Fax: (84-24).38693551 http://inest.hust.edu.vn

No: 03/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

: Mong Duong 2 BOT	Coal Fired Power Plant
--------------------	------------------------

- : Mong Duong ward Cam Pha city Quang Ninh province : 15/08/2024
- Sampling Date

Sampling Site

Address

Type of Samples : Vibration

Number of Samples

: 29 samples x 2 times per day (day time and night time)

	Sampling	Measurement	Day	time	Night	time
No	positions	methods	Leq (dB)	Lmax (dB)	Leq (dB)	Lmax (dB)
1.	V1		51	55	49	53
2.	V2		62	66	58	62
3.	V3		50	54	48	51
4.	V4		58	63	55	59
5.	V5		56	60	53	55
6.	V6	,	58	62	55	59
7.	V7		61	65	58	62
8.	V8	TCVN	57	61	56	59
.9.	V9		54	57	52	55
10.	V10		55	58	52	55
11.	V11		37	42	34	38
12.	V12		35	39	34	38
13.	V13		62	66	57	60
14.	V14		63	67	60	65
15.	V15	6063·2001	38	42	36	39
16.	V16	0903.2001	58	62	54	69
17.	V17		52	56	49	54
18.	V18		72	79	65	74
19.	V19		74	85	70	82
20.	V20		41	47	36	42
21.	V21		40	45	35	40
22.	V22		47	51	44	47
23.	V23		49	53	47	50
24.	V24		38	42	36	39
25.	V25		36	39	33	37
26.	V26		34	37	32	36
27.	V27		71	78	69	75
28.	V28		48	51	48	51
29.	V29		64	66	63	65

Notes:

The result is valid only for samples at the monitoring time. 1.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

Note:

Sampli	ng positions:	Coord	inates
		X	Y
VI	Unit 1 area – pump for boiler – 1 st floor – turbine building	2331206	458244
V2	Unit 1 area – compressor – 1^{st} floor – turbine building	2331206	458244
V3	Unit 2 area – pump for boiler – 1^{st} floor – turbine building	2331005	458247
V4	Unit 2 area – compressor – 1 st floor – turbine building	2331207	458244
V5	Unit $1 - 2^{nd}$ floor area – turbine building	2331215	455112
V6	Unit $2 - 2^{nd}$ floor area – turbine building	2331132	458152
V7	Unit $1 - 3^{rd}$ floor area – turbine building	2331198	458299
V8	Unit $2 - 3^{rd}$ floor area – turbine building	2331174	458153
V9	Ball mill area – Unit $1 - 1^{st}$ floor – coal crusher area	2331141	458294
V10	Ball mill area – Unit $2 - 1^{st}$ floor – coal crusher area	2331164	458177
V11	Hopper pouring, heater ash hopper of Unit $1 - 1^{st}$ floor – Boiler building	2331075	458294
V12	Hopper pouring, heater ash hopper of Unit $2 - 1^{st}$ floor – Boiler building	2331073	458169
V13	Hopper pouring area of Unit $1 - 2^{nd}$ floor – electrostatic precipitator area	2331031	458360
V14	Hopper pouring area of Unit 2 – 2 nd floor – electrostatic precipitator area	2331053	458164
V15	Compressor – 1 st floor – electrostatic precipitator area	2331053	458253
V16	<i>Circulating pump and oxygen pump – FGD absorption tower of Unit 1</i>	2330949	458241
V17	Circulating pump and oxygen pump – FGD absorption tower of Unit 2	2330949	458210
V18	Exhaust gases dryer including under shaft bearing and upper shaft bearing of Unit 1 – FGD and absorption tower area	2330976	458241
V19	Exhaust gases dryer including under shaft bearing and upper shaft bearing of Unit 2 – FGD and absorption tower area	2330978	458137
V20	Smoke fan area of ground floor of Unit 1 – FGD and absorption tower area	2330964	458281
V21	Smoke fan area of ground floor of Unit 2 – FGD and absorption tower area	2331116	458114
V22	Pump – Plaster building	2330956	458241
V23	Vacuum conveyor filter – 3rd floor – plaster building	2330974	458241
V24	Silo $1 - Area$ of slag silo at the bottom of furnace	2331115	458333
V25	Silo 2 - Area of slag silo at the bottom of furnace	2330915	458092
V26	Excavator – coal warehouse	2330727	458032
V27	Coal dividing machine of Unit 1 – Coal warehouse	2331166	458241
V28	Coal dividing machine of Unit 2 – Coal warehouse	2331165	458137
V29	Coal scraper – Coal warehouse	2330738	457721

QA/QC

MSc. Ton Thu Giang

Ha Noi, September 09th, 2024 School of Environmental Science and Technology

VIÊN KHOA HOC CÔNG NGHỆ MÔI TRƯỜN CHIK VIỆN TRƯỞNG PGS.TS. Nguyễn Chị Ấnh Cuyết

- <u>Notes:</u> 1. The result is valid only for samples at the monitoring time.
- Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer
 The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.
- Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology 4.

Page 6

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Tel.: (84-24).38681686 Email: inest@hust.edu.vn

Fax: (84-24).38693551

http://inest.hust.edu.vn

No: 04/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Sampling area	: Mong Duong 2 BOT Coal Fired Power Plant
Address	: Mong Duong Ward, Cam Pha City, Quang Ninh Province
Sampling date	: 14/08/2024
Type of samples	: Ambient air
Number of samples	: 01 sample

Parameters	Time Uni	Unite	Results	
		Omts	K1	
CO ₂	14h-16h	mg/Nm ³	1333.1	
CH ₄	14h-16h	mg/Nm ³	1.675	
N ₂ O	14h-16h	mg/Nm ³	0.637	
	Parameters CO2 CH4 N2O	Parameters Time CO2 14h-16h CH4 14h-16h N2O 14h-16h	ParametersTimeUnitsCO214h-16hmg/Nm³CH414h-16hmg/Nm³N2O14h-16hmg/Nm³	

Notes:

The monitoring results were calculated at 25°C. 760 mmHg.

Sampling positions:

K1: Plant area near coal store

OA/OC

MSc. Ton Thu Giang

Coordinates X Y 21°04'13.4" N 107°20'56.2"E

Notes:

- The result is valid only for samples at the monitoring time. 1.
- Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer 2.
- 3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.
- Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology 4.

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi

Tel.: (84-24).38681686

Email: inest@hust.edu.vn Fax: (84-24).38693551

http://inest.hust.edu.vn

Số: 05/27/KQQT/2024

ENVIRONMENTAL MONITORING RESULTS

Sampling Site	: Mong Duong 2 BOT Coal Fired Power Plant
Address	: Mong Duong ward – Cam Pha city – Quang Ninh province
Sampling Date	: 14-15/08/2024
Type of Samples	: Cooling water
Number of Samples	: 03 samples

				Results			MDPCL -EHS-	QCI 3:2020	OP VQN	QCVN 2011/B7	1 40: [NMT
No.	Parameters	Unit	Analytical methods	CW1	CW2	CW3	SP-02- 006	C (Column B)	Cmax	C (Column B)	Cmax
1.	Temperature	°C	SMEWW 2550B:2023	32.1	36.8	36.3	40	40	40	40	40
2.	Temperature difference (out-in)	°C	SMEWW 2550B:2023	-	4.7	4.2	8		-	-	-
3.	рН	-	TCVN 6492:2011	7.7	7.6	7.5	6.0-9.0	5,5 – 9,0	5,5 – 9,0	5.5– 9.0	5.5– 9.0
4.	Color (pH=7)	Pt/Co	TCVN 6185:2015	<5	<5	<5	70	150	150	150	150
5.	COD	mg/L	SMEWW 5220C:2023	74	67	71	81	150	120	150	135
6.	BOD ₅	mg/L	SMEWW 5210B:2023	27	24	25	40.5	50	40	50	45
7.	TSS	mg/L	TCVN 6625:2000	8	7	8	50	100	80	100	90
8.	Arsenic (As)	mg/L	EPA method 200.8	0.045	0.069	0.031	0.081	0,1	0.08	0.1	0.09
9.	Mercury (Hg)	mg/L	EPA method 200.8	< 0.0005	< 0.0005	< 0.0005	0.005	0,01	0.008	0.01	0.009
10.	Lead (Pb)	mg/L	EPA method 200.8	< 0.002	< 0.002	< 0.002	0.405	0,5	0.4	0.5	0.45
11.	Cadmium (Cd)	mg/L	EPA method 200.8	< 0.0005	< 0.0005	< 0.0005	0.0081	0,1	0.08	0.1	0.09
12.	Chromium III	mg/L	EPA Method 200.8 & SMEWW 3500-Cr.B 2023	0.018	0.022	0.013	0.5	1	0.8	1	0.9
13.	Chromium VI	mg/L	SMEWW 3500-Cr.B 2023	< 0.003	< 0.003	< 0.003	0.081	0,1	0.08	0.1	0.09
14.	Copper(Cu)	mg/L	EPA method 200.8	0.007	0.005	0.003	0.5	2	1.6	2	1.8
15.	Zinc (Zn)	mg/L	EPA method 200.8	0.207	0.006	0.151	1.0	3	2.4	3	2.7
16.	Nickel (Ni)	mg/L	EPA method 200.8	0.014	0.013	0.010	0.405	0,5	0.4	0.5	0.45
17.	Manganese (Mn)	mg/L	EPA method 200.8	0.004	0.005	< 0.002	0.81	1	0.8	1	0.9
18.	Iron (Fe)	mg/L	EPA method 200.8	0.77	0.85	0.60	1	5	4	5	4.5
19.	Mineral Oil & Grease	mg/L	SMEWW5520B&F: 2023	<1.0	<1.0	<1.0	4.05	10	8	10	9
20.	Flouride (F ⁻)	mg/L	SMEWW 4500F ⁻ .B&D:2023	1.46	1.43	1.39	8.1	10	8	10	9
21.	Sulfide (as H ₂ S)	mg/L	SMEWW 4500S2- .B&D:2023	<0.03	<0.03	<0.03	0.405	0,5	0.4	0.5	0.45
22.	Total N	mg/L	TCVN 6638:2000	3.5	3.5	3.5	24.3	40	32	40	36
23.	Total P	mg/L	TCVN 6202:2008	0.04	0.10	0.06	4.86	6	4.8	6	5.4
24.	Residue Chlorine	mg/L	TCVN 6225-3:2011	0.7	0.3	0.7	0.2	2	1.6	2	1.8
25.	Ammonium (NH4 ⁺)	mg/L	SMEWW 4500 NH3.B&F:2017	0.10	0.07	0.06	8.1	,10	8	10	9

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

	Parameters				Results			QCĐP 3:2020/QN		QCVN 40: 2011/BTNM7	
No.		Unit	Analytical methods	CW1	CW2	CW3	SP-02- 006	C (Column B)	Cmax	C (Column B)	Cmax
26.	Coliform	MPN/ 100mL	SMEWW 9221B:2023	110	110	100	5,000	5,000	5,000	5,000	5,000

Note:

- MDPCL-EHS-SP-02-006: The standard of Mong Duong 2 BOT thermal power plant on permited limit of cooling water

OCVN 40:2011/BTNMT- National technical regulation on industrial wastewater; Column B indicates the values of parameters of industrial wastewater (C) when it is discharged into the water sources not serving tap water supply;

C_{max} is the maximum permissible value of a pollution parameter of industrial wastewater being discharged into receiving waters (mg/L). Cmaxis calculated as follows: $C_{max} = C x K_q x K_f = C x 1 x 0.9 = 0.9 x C$

In which:

+ C: is the value of a pollution parameter of industrial wastewater specified in QCVN 40:2011/BTNMT;

+ K_q : Flow rate coefficient/ volume of wastewater receiving resource $K_q = 1$

+ K_{f} is the coefficient of discharged flow rate (F >5.000 m³/24h) therefore; $K_f = 0.9$;

QCDP 3:2020/QN - Local technical regulation on industrial wastewater in Quang Ninh province; Column B specifies the C value of pollution parameters in industrial wastewater when discharged into water sources not used for domestic water supply purposes, C_{max} is the maximum allowable value of pollution parameters in industrial wastewater when discharging into the receiving water source:

$$C_{max} = C x K_q x K_f x K_{QN} = C x 1.0 x 0.8 x 1.0 = 0.8 x C$$

In which:

+ C: Values of pollution parameters in industrial wastewater specified in QCDP 3:2020/QN

 $+ K_a$: Coefficient of wastewater receiving source corresponding to the flow volume of rivers, streams, canals and ditches, or corresponding to the volume of lakes, ponds, lagoons; the use purpose of the coastal sea area $K_a = 1.0$;

+ Kf. Wastewater flow coefficient corresponding to the total wastewater flow of industrial facilities when discharging into the receiving water source $K_f = 0.8$;

+ K_{ON}: Coefficient of additional application specific to QCDP 03: 2020/QN for waste sources when discharged into rivers, streams, creeks, canals, lakes and reservoirs with different water use purposes and in different areas. different regions, $K_{ON} = 1.0$;

Symbol (-): unstipulated;

-	Sampl	ing	positions
---	-------	-----	-----------

- Sampling positions:	Coordinates			
	X	Y		
CW1: Intake point of cooling water	21°04'36"N	107°21 '18.5''E		
CW2: Discharge point into the cooling water canal	21°04'28.3"N	107°20`57.1"E		
CW3: Discharge point to common Mong Duong Power complex canal	21°04'42.4"N	107°21 '03.1''E		
	2331698	458326		

OA/OC

MSc. Ton Thu Giang

Ha Noi, September 9th, 2024 School of Environmental Science and Technology

VIEN KHOA HOC À CÔNG NG ÔI TRƯỜNG VIỆN TRƯỞNG PGS.TS. Nguyễn Chị Ấnh Euyết

Notes:

- 1. The result is valid only for samples at the monitoring time.
- Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer
- 3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.
- Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Tel.: (84-24).38681686

BÁCH KHOA

Fax: (84-24).38693551

Email: inest@hust.edu.vn

http://inest.hust.edu.vn

Số: 06/27/KQQT/2024

ENVIRONMENTAL MONITORING RESULTS

: Mong Duong 2 BOT Coal Fired Power Plant
: Mong Duong ward - Cam Pha city - Quang Ninh province
: 14/08/2024
: Industrial wastewater
: 01 sample

No	Parameters	arameters Unit Analytical methods		Results MDPCL- FHS-SP-		QCĐP 3:20	20/QN	QCVN 40: 2011/BTNMT		
110.	Tarameters	Om	Anarytical methods	WW1	02-006	C (Column B)	Cmax	C (Column B)	Cmax	
1.	Temperature	°C	SMEWW 2550B:2023	34.0	40	40	40	40	40	
2.	pH	-	TCVN 6492:2011	8.4	6.0-9.0	5.5-9.0	5.5 – 9.0	5.5 - 9.0	5.5 – 9.0	
3.	Color (pH=7)	Pt/Co	TCVN 6185:2015	<5	70	150	150	150	150	
4.	COD	mg/L	SMEWW 5220C:2023	5	81	150	150	150	150	
5.	BOD ₅	mg/L	SMEWW 5210B:2023	3	40.5	50	50	50	50	
6.	TSS	mg/L	TCVN 6625:2000	7	50	100	100	100	100	
7.	Arsenic (As)	mg/L	EPA method 200.8	< 0.0015	0.081	0.1	0.1	0.1	0.1	
8.	Mercury (Hg)	mg/L	EPA method 200.8	< 0.0005	0.005	0.01	0.01	0.01	0.01	
9.	Lead (Pb)	mg/L	EPA method 200.8	< 0.002	0.405	0.5	0.5	0.5	0.5	
10.	Cadmium (Cd)	mg/L	EPA method 200.8	< 0.0005	0.0081	0.1	0.1	0.1	0.1	
11.	Chromium III	mg/L	EPA Method 200.8 & SMEWW 3500-Cr.B 2023	0.004	0.5	1	1	1	1	
12.	Chromium VI	mg/L	SMEWW 3500-Cr.B 2023	< 0.003	0.081	0.1	0.1	0.1	0.1	
13.	Copper(Cu)	mg/L	EPA method 200.8	< 0.001	0.5	2	2	2	2	
14.	Zinc (Zn)	mg/L	EPA method 200.8	< 0.005	1.0	3	3	3	3	
15.	Nickel (Ni)	mg/L	EPA method 200.8	0.003	0.405	0.5	0.5	0.5	0.5	
16.	Manganese (Mn)	mg/L	EPA method 200.8	0.002	0.81	1	1	1	1	
17.	Iron (Fe)	mg/L	EPA method 200.8	0.19	1	5	5	5	5	
18.	Mineral Oil & Grease	mg/L	SMEWW5520B&F:2023	<1.0	4.05	10	10	10	10	
19.	Flouride (F ⁻)	mg/L	SMEWW 4500-F⁻ .B&D:2023	0.22	8.1	10	10	10	10	
20.	Sulfide (as H ₂ S)	mg/L	SMEWW 4500 S ²⁻ B&D:2023	< 0.03	0.405	0.5	0.5	0.5	0.5	
21.	Total N	mg/L	TCVN 6638:2000	3.5	24.3	40	40	40	40	
22.	Total P	mg/L	TCVN 6202:2008	0.10	4.86	6	6	6	6	
23.	Residue Chlorine	mg/L	TCVN 6225-3:2011	0.7	0.2	2	2	2	2	

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

No.	Parameters	Unit Analytical methods		Results	MDPCL-	QCĐP 3:2020/QN		QCVN 40: 2011/BTNMT	
		Unit	Anarytical methods	WW1	02-006	C (Column B)	Cmax	C (Column B)	Cmax
24.	Ammonium (NH4 ⁺)	mg/L	SMEWW 4500 NH3.B&F:2023	0.06	8.1	10	10	10	10
25.	Coliform	MPN/ 100mL	SMEWW 9221B:2023	92	5,000	5,000	5,000	5,000	5,000

Note

MDPCL-EHS-SP-02-006: The standard of Mong Duong 2 BOT thermal power plant about permitted limit of industrial wastewater.

OCVN 40:2011/BTNMT- National technical regulation on industrial wastewater; Column B indicates the values of parameters of industrial wastewater (C) when it is discharged into the water sources not serving tap water supply;

 C_{max} is the maximum permissible value of a pollution parameter of industrial wastewater being discharged into receiving waters (mg/L). C_{max} is calculated as follows:

$$C_{max} = C x K_q x K_f = C x 1.0 x 1.0 = C$$

In which:

+ C: is the value of a pollution parameter of industrial wastewater specified in OCVN 40:2011/BTNMT;

+ K_a : Flow rate coefficient/ volume of wastewater receiving resource. $K_a = 1.0$

+ K_f : is the coefficient of discharged flow rate $K_f=1.0$

OC*P* 3:2020/ON - Local technical regulation on industrial wastewater in Ouang Ninh province; Column B specifies the C value of pollution parameters in industrial wastewater when discharged into water sources not used for domestic water supply purposes, C_{max} is the maximum allowable value of pollution parameters in industrial wastewater when discharging into the receiving water source:

$$C_{max} = C x K_q x K_f x K_{QN} = C x 1.0 x 1.0 x 1.0 = C$$

In which:

+ C: Values of pollution parameters in industrial wastewater specified in QCDP 3:2020/QN

+ K_q : Coefficient of wastewater receiving source corresponding to the flow volume of rivers, streams, canals and ditches, or corresponding to the volume of lakes, ponds, lagoons; the use purpose of the coastal sea area $K_q = 1.0$;

+ K_f: Wastewater flow coefficient corresponding to the total wastewater flow of industrial facilities when discharging into the receiving water source $K_f = 1.0$;

+ K_{ON}: Coefficient of additional application specific to QCDP 03: 2020/QN for waste sources when discharged into rivers, streams, creeks, canals, lakes and reservoirs with different water use purposes and in different areas. different regions, K_{QN} = 1.0:

Symbol (-): unstipulated;

San

Coordi	nates
X	Y
21°04'33.8"N	107°21 '4.69''E
(2331338)	(458360)
	Coordi X 21°04'33.8"N (2331338)

QA/QC

MSc. Ton Thu Giang

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi

Tel.: (84-24).38681686 Email: inest@hust.edu.vn Fax: (84-24).38693551

http://inest.hust.edu.vn

Tax. (04-24).00000001 Map. Miles

No: 07/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Sampling Site	: Mong Duong 2 BOT Coal Fired Power Plant	
Address	: Mong Duong ward – Cam Pha city – Quang Ninh provinc	e
Sampling Date	: 14/08/2024	
Type of Samples	: Sanitary wastewater	
Number of Samples	: 03 samples	

					Descrite	QCVN 14:			
No.	No. Parameters		Analytical methods	Results			2008/BTNMT		
				SH1	SH2	SH3	C(Column B)	Cmax	
1.	Temperature	°C	SMEWW 2550B:2023	31.4	30.7	30.5	-	-	
2.	pН	-	TCVN 6492:2011	7.5	7.0	7.2	5.0÷9.0	5.0÷9.0	
3.	BOD ₅	mg/L	SMEWW 5210B:2023	7	8	6	50	60	
4.	TSS	mg/L	TCVN 6625:2000	15	14	13	100	120	
5.	TDS	mg/L	SOP-TDS	812	715	935	1.000	1.200	
6.	Sulfide (as H ₂ S)	mg/L	SMEWW 4500S2- .B&D:2023	< 0.03	< 0.03	< 0.03	4.0	4.8	
7.	Ammonium (NH4 ⁺)	mg/L	SMEWW 4500 NH₃.B&F:2023	0.05	0.07	0.34	10	12	
8.	Nitrate (NO ₃ ⁻ -N)	mg/L	SMEWW 4500-NO ₃ - E:2023	7.45	6.85	7.40	50	60	
9.	Oil and grease	mg/L	SMEWW 5520 B&F:2023	<1.0	<1.0	<1.0	20	24	
10.	Phosphate (PO ₄ ³⁻ -P)	mg/L	TCVN 6202:2008	4.88	3.38	7.19	10	12	
11.	Total surface active agents ^(*)	mg/L	SMEWW 5540B&C:2017	< 0.015	<0.015	< 0.015	10	12	
12.	Coliform	MPN/ 100mL	SMEWW 9221B:2023	220	250	270	5.000	5.000	

Note:

• **QCVN 14:2008/BTNMT** - National technical regulation on domestic wastewater. Column B specifies C value of pollution parameters as a basis for calculating the permissible maximum value in domestic wastewater as being discharged into water resources not used for the purpose of domestic water supply. C_{max} value is calculated as follows $C_{max} = C \times K = 1.2 \times C$ + K coefficient =1.2 (agencies. offices. school. research institutions under10,000 m²)

- Symbol (-): unstipulated; (*): Parameter is analyzed by sub-contractor Institute of Science and Technology for Energy & Environment, Vimcerts 079.

Sampling positions:	Coordinates				
	X	Y			
SH1: Sanitary waste water in Operation house	21°04'39.6"N	107°21'07.8"E			
	(2331603)	(458369)			
SH2: Sanitary waste water in Chemical dosing building	21°04`28.7`'N	107°21'09.6"E			

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

SH3: Sanitary waste water in coal warehouse area

QA/QC

MSc. Ton Thu Giang

(2331391) 21°04'11.5"N (2331262) (458375) 107°20'56.5"E (458175)

Ha Noi, September 09th, 2024 School of Environmental Science and Technology

VIỆN TRƯỞNG PGS.TS. Nguyễn Chị Anh Cuyết

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

Tel.: (84-24).38681686

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi

http://inest.hust.edu.vn

Email: inest@hust.edu.vn

Fax: (84-24).38693551

Số: 08/27/KQQT/2024

ENVIRONMENTAL MONITORING RESULTS

Sampling area	: Mong Duong 2 BOT Coal Fired Power Plant
Address	: Mong Duong Ward, Cam Pha City, Quang Ninh Province
Sampling date	: 14/08/2024
Type of samples	: Air emission
Number of samples	: 03 samples

No	Parameters	Unit	Analytical		Results		MDPCL- EHS-SP-	QC 22:2009/	VN BTNMT
			methous	S1.1	S1.2	S1.3	02-006	C _(Column B)	Cmax
1.	Temperature	°C	SOP-KT.01	72	72	72	-	-	-
2.	PM	mg/Nm ³	EPA Method 5	16.0	18.3	17.7	50	200	112
3.	SO ₂	mg/Nm ³	EPA Method 6	44.5	47.1	44.5	280	500	280
4.	CO ^(**)	mg/Nm ³	TCVN 7242:2003	<10	<10	<10	900	1.000(*)	640(*)
5.	NO _x (Calculated by NO ₂)	mg/Nm ³	EPA Method 7	438.3	496.7	430.8	560	1,000	560
Mata									

The concentration of pollutants in stack emission was calculated at the standard condition with the temperature is $25^{\circ}C$ and the pressure is 760 mm Hg.

MDPCL-EHS-SP-02-006: The standard of Mong Duong 2 BOT thermal power plant about permitted limit of industrial air emission.

QCVN 22:2009/BTNMT- National Technical Regulation on emissions of thermal power industry. Column B C concentrations specified by the parameters of pollution in emissions of thermal as a basic for calculating the maximum concentration (Cmax) allowed for all units of Thermal Power Plants with the applicable period from January 1st 2015. In which. calculating Cmax as follow: $Cmax = C \times Kp \times Kv = 0.56 \times C$

+ Kp is power coefficient. Kp=0.7; Kv is regional coefficient. Kv=0.8 (Urban city type II – Cam Pha City);

Symbol (*) apply for QCVN 05:2020/QN - Local Technical Regulation on industrial emissions of inorganic substances and dusts. Column B C concentration specified by dusts and inorganic substances (here is only for CO) as a basic for calculating the maximum concentration (Cmax) allowed for all production facilities. processing. trading and industrial services operations from January 1st 2015. In which. calculating Cmax as follow: $Cmax(*) = C \times Kp \times Kv = 0.64 \times C$

+ Kp is coefficient of flow sources. Kp=0.8; Kv is regional coefficient. Kv=0.8 (Urban city type II – Cam Pha City); - Symbol (**): Parameter is analyzed by sub-contractor;

Sampling positions:

S1.1: Stack of line 1. sample 1

S1.2: Stack of line 1. sample 2

S1.3: Stack of line 1. sample 3

Operation status: Stack of line 1 works with 365 MW of capacity.

OA/OC

MSc. Ton Thu Giang

Ha Noi, September 9th, 2024 School of Environmental Science and Technology VIÊN KHOA HOC VÀ CÔNG NGHẾ MÔI TRƯỜNG VIÊN TRƯỞNG

Coordinates:

X

21°04'18.3" N

(2330961)

Notes:

The result is valid only for samples at the monitoring time. 1.

- Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer Nguyễn Chi Anh Cuyết The samples will be destroyed after 5 days from the date of income t 2.
- The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer. 3.

107°20'59.7"E

(458239)

Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology 4.

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi

Tel.: (84-24).38681686 Email: inest@hust.edu.vn Fax: (84-24).38693551 http://inest.hust.edu.vn

Số: 09/27/KQQT/2024

ENVIRONMENTAL MONITORING RESULTS

Sampling area	: Mong Duong 2 BOT Coal Fired Power Plant
Address	: Mong Duong Ward, Cam PhaCity, QuangNinh province
Sampling date	: 14/08/2024
Type of samples	: Air emission
Number of samples	: 03 samples
	·

No	Parameters	Unit	Analytical		Results		MDPCL- EHS-SP-	QCV 22:2009/B	'N TNMT
			memous	S2.1	S2.2	S2.3	02-006	C _(Column B)	Cmax
1.	Temperature	°C	SOP-KT.01	71	71	71	-	-	-
2.	PM	mg/Nm ³	EPA Method 5	21.7	22.8	21.6	50	200	112
3.	SO ₂	mg/Nm ³	EPA Method 6	65.4	94.2	65.4	280	500	280
4.	CO ^(**)	mg/Nm ³	TCVN 7242:2003	<10	<10	<10	900	1,000 ^(*)	640 ^(*)
5.	NO _x (Calculated by NO ₂)	mg/Nm ³	EPA Method 7	442.1	436.5	492.9	560	1,000	560
Not	25.								

The concentration of pollutants in stack emissions provided at the conditions (temperature 25°C, pressure 760 mm Hg).

MDPCL-EHS-SP-02-006: The standard of Mong Duong 2 BOT thermal power plant about permitted limit of industrial air emission

QCVN 22:2009/BTNMT- National Technical Regulation on emissions of thermal power industry. Column B C concentrations specified by the parameters of pollution in emissions of thermal as a basic for calculating the maximum concentration (Cmax) allowed for all units of Thermal Power Plants with the applicable period from January 1st 2015. In which. calculating Cmax as follow: $Cmax = C \times Kp \times Kv = 0.56 \times C$

+ Kp is power coefficient. Kp=0.7; Kv is regional coefficient. Kv=0.8 (Urban city type II – Cam Pha City);

Symbol (*) apply for QCVN 05:2020/QN - Local Technical Regulation on industrial emissions of inorganic substances and dusts. Column B C concentration specified by dusts and inorganic substances (here is only for CO) as a basic for calculating the maximum concentration (Cmax) allowed for all production facilities. processing. trading and industrial services operations from January 1st 2015. In which. calculating Cmax as follow: $Cmax(*) = C \times Kp \times Kv = 0.64 \times C$

+ Kp is coefficient of flow sources. Kp=0.8;

+ Kv is regional coefficient. Kv=0.8 (Urban city type II – Cam Pha City);

- Symbol (**): Parameter is analyzed by sub-contractor;

- Sampling position	Coordinat	tes:
S2.1: Stack of line 2. Sample 1	21°04'18.3" N	107°20'59.7"E
S2.2: Stack of line 2. Sample 2	(2330961)	(458233)
S2.3: Stack of line 2 Sample 3	(=========)	(430233)

Operation status: Stack of line 2 works with 357MW of capacity.

Ha Noi, September 9th, 2024 OA/OC School of Environmental Science and Technology VIÊN кноа нос CÔNG N MSc. Ton Thu Giang MÔI TRƯỜNG Notes: VIÊN TRƯỞNG The result is valid only for samples at the monitoring time. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the

1.

2

3.

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Tel.: (84-24).38681686

Email: inest@hust.edu.vn

Fax: (84-24).38693551 http://inest.hust.edu.vn

No: 10/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Sampling area	: Mong Duong 2 BOT Coal Fired Power Plant
Address	: Mong Duong Ward, Cam PhaCity, QuangNinh province
Sampling date	: 14/08/2024
Type of samples	: Air emission
Number of samples	: 06 samples

No	Parameters	Unit	Analytical methods		Res	ults	
	Stack of line 1			S1.1	S1.2	S1.3	Average
1.	Hg and compound calculated in Hg	mg/Nm ³	EPA Method 29	< 0.001	< 0.001	< 0.001	< 0.001
	Stack of line 2			S2.1	S2.2	S2.3	Average
2.	Hg and compound calculated in Hg	mg/Nm ³	EPA Method 29	< 0.001	< 0.001	< 0.001	< 0.001

Notes:

The concentration of pollutants in stack emission was calculated at the standard condition with the temperature is 25°C and the pressure is 760 mm Hg.

- Sampling positions:

S1.1: Stack of line 1. Sample 1 S1.2: Stack of line 1. Sample 2

S1.3: Stack of line 1. Sample 3

S2.1: Stack of line 2. Sample 1 S2.2: Stack of line 2. Sample 2 S2.3: Stack of line 2. Sample 3

> VIÊN KHOA HỌC À CÔNG NG

MÔI TRƯỜN(

Operation status: Stack of line 1 works with 365 MW of capacity. Stack of line 2 works with 357MW of capacity.

QA/QC

MSc. Ton Thu Giang

Ha Noi, September 09th, 2024 School of Environmental Science and Technology

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

- 3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.
- Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology

VIỆN TRƯỞNG PGS.TS. Nguyễn Chị Ánh Tuyết

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Tel.: (84-24).38681686 Email: inest@hust.edu.vn Fax: (84-24).38693551 http: //inest.hust.edu.vn

VILAS 406; VIMCERTS 055

No: 11/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Site : Mong Duong 2 BOT Coal Fired Power Plant	: Mong Duong ward – Cam Pha city – Quang Ninh province	Date : 14-15/08/2024	amples : Surface water	of Samples : 04 samples
Sampling Site	Address	Sampling Date	Type of Samples	Number of Sample

SN.	Dowomotowo	TI:4	 		Res	ults		OCVN 10:
•ONT	T AI AIIICICI S		Analytical methods	MD1	MD2	MD3	MD4	2023/BTNMT
1.	Temperature	°C	SMEWW 2550B:2023	28.3	28.1	27.4	27.9	1
2.	Hd	I	TCVN 6492:2011	7.5	7.6	7.7	7.7	6.5 - 8.5
3.	EC	mS/cm	SMEWW 2510B:2023	31.7	33.1	41.5	41.2	
4.	DO	mg/L	TCVN 7325:2016	7.8	8.2	8.6	8.4	>5
5.	BOD5	mg/L	SMEWW 5210B:2017	22	24	23	25	1
6.	TSS	mg/L	TCVN 6625:2000	11	10	6	11	50
7.	Nitrate (NO ₃ -N)	mg/L	SMEWW 4500 NO ₃ -E:2017	0.45	0.79	1.13	1.09	1
&	Total N	mg/L	SMEWW 4500-N.C:2017	1.00	1.91	2.19	2.50	1
.6	Total P	mg/L	TCVN 6202:2008	0.11	0.10	0.10	0.07	I.
10.	Ammonium ^(*)	mg/L	SMEWW 4500 NH3.B&F:2023	<0.2	<0.2	<0.2	<0.2	0.1
11.	Arsenic (As)	mg/L	US EPA Method 200.8	0.002	0.004	0.002	0.003	0.02
12.	Mercury (Hg) ^(*)	mg/L	US EPA Method 6020A: 1998	0.0001	0.0001	0.0002	0.0001	0.0005
13.	Lead (Pb)	mg/L	US EPA Method 200.8	<0.0005	<0.0005	<0.0005	<0.0005	0.05

<u>Notes:</u> 1 The result is noted only for

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer. Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology

at to assist and a second and the second and the second of the second of

Times of issuance: 02

Two Analytical Instantials MD1 MD2 MD3 MD4 14. Cadmium (Cd) mg/L US EPA Method 200.8 -0.0005 -0.003	N	Daramatare	TInit	A wolvestoon and the share		Re	sults		OCVN 10:	
14. Cadmium (Cd) mg/L US: EPA Method 200.8 <0.0005		I AI AIICICI S		Allalytical inethods	MD1	MD2	MD3	MD4	2023/BTNM	
15. Chrominm (Ct) mg/L US EPA Method 200.8 0.005 0.007 0.008 17. Zine (Zu) mg/L US EPA Method 200.8 <0.003	<td>14.</td> <td>Cadmium (Cd)</td> <td>mg/L</td> <td>US EPA Method 200.8</td> <td><0.0005</td> <td><0.0005</td> <td><0.0005</td> <td><0.0005</td> <td>0.005</td>	14.	Cadmium (Cd)	mg/L	US EPA Method 200.8	<0.0005	<0.0005	<0.0005	<0.0005	0.005
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.	Chromium (Cr)	mg/L	US EPA Method 200.8	0.005	0.00	0.007	0.008	0.1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	16.	Copper (Cu)	mg/L	US EPA Method 200.8	<0.003	<0.003	<0.003	<0.003	0.02	
Is Nickel (Ni) mg/L US EPA Method 6020A: 0.017 0.046 0.040 0.031 1 19. Marganese (Mn) mg/L US EPA Method 200.8 <0.017	17.	Zinc (Zn)	mg/L	US EPA Method 200.8	<0.003	0.004	0.003	0.003	0.1	
19. Mangenese (Mn) mg/L US EPA Method 200.8 <0.0015 0.217 0.103 0.003 20. Iton (Fe) mg/L US EPA Method 6020B 0.300 0.010 0.012 0.010 21. Selenium (Se) mg/L US EPA Method 6020A: 0.008 0.010 0.012 0.010 22. Total oil and grease mg/L SMEWW 5520B&F:2023 <1.0	18.	Nickel (Ni)	mg/L	US EPA Method 6020A: 1998	0.017	0.046	0.040	0.031		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19.	Manganese (Mn)	mg/L	US EPA Method 200.8	<0.0015	0.217	0.103	0.003	0.5	
21. Selenium (Se) mg/L US EPA Method 6020A: 0.008 0.010 0.012 0.010 22. Total oil and grease mg/L SMEWW 5520B&F:2023 <1.0	20.	Iron (Fe)	mg/L	US EPA Method 6020B	0.30	0.19	0.18	0.19	0.5	
22. Total oil and grease mg/L SMEWW 5520B&F:2023 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 >1.0 <1.0 >1.0	21.	Selenium (Se)	mg/L	US EPA Method 6020A: 1998	0.008	0.010	0.012	0.010	1	
23. Coliform MPN/ 100mL SMEWW 9221B:2023 200 370 200 Aster 20 370 370 200 Aster 200 370 370 200 200 300: 10:00mL 10:00mL 200 201 5 200 370 200 201 5 200 370 200 201 5 200 370 200 201 5 200 370 200 201 201 200 370 200 201 201 200 370 200 201 201 200 370 201 201 201 200 200 200 201 201 201 200 200 201 201 200 200 200 201 201 200 200 200 201 201 201 201 201 201 201 201 202 201 </td <td>22.</td> <td>Total oil and grease</td> <td>mg/L</td> <td>SMEWW 5520B&F:2023</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>5.0</td>	22.	Total oil and grease	mg/L	SMEWW 5520B&F:2023	<1.0	<1.0	<1.0	<1.0	5.0	
 Note: Orrend a constal water quality. Long Gac, we apply limit value of polluted parameters in coastal. Sumpling sites:. Mong Duong river where water run from Tran bridge (Zone 4, Mong Duong ward) Sampling positions: Sampling positions: Sampling positions: Sampling positions: Sampling positions: Sampling positions: MD1: Tran bridge (Zone 4, Mong Duong ward) to Luong Gac (Zone 4, Mong Duong ward) Sampling positions: Sampling positions: MD1: Tran bridge (Zone 4, Mong Duong ward) Sampling positions: MD2: Ang Duong ward) D10720'50'50'FE MD2: Anony bueng bridge MD3: Area where conveyor transfers coal to factory MD2: Anony where river runs into Luong Gac conal MD4: Estuary where river runs into Luong Gac conal QAOC MSc. Ton Thu Giang 	23.	Coliform	MPN/ 100mL	SMEWW 9221B:2023	200	370	370	200	1,000	
MD1: Tran bridge (Zone 4, Mong Duong ward) MD2: Mong Duong bridge MD2: Mong Duong bridge MD2: Mong Duong bridge MD3: Area where conveyor transfers coal to factory MD4: Estuary where river runs into Luong Gac canal MD4: Estuary where river runs into Luong Gac canal QAVC MSc. Ton Thu Giang MD4: Transfers (MD4) MD4: Estuary where river runs into Luong Gac canal MD4: Estua					X		\boldsymbol{Y}			
MD2: Mong Duong Drage MD3: Area where conveyor transfers coal to factory MD4: Estuary where river runs into Luong Gac canal MD4: Estuary where river runs into Luong Gac canal OA/OC MD5: Area where river runs into Luong Gac canal OA/OC MD4: Estuary where river runs into Luong Gac canal DA04: Estuary Runs, Es		MD1: Tran bridge (Zone	4, Mong Duonș	g ward)	21°03 '48.0"	N	107º19'26.7"E			
MD4: Estuary where river runs into Luong Gac canal MD4: Estuary where river runs into Luong Gac canal QA/QC MD721'41.0"E Ha Noi, September 9 th , 2024 Construction of Environmental Science and Techno MD4: Estuary where river runs into Luong Gac canal MD4: Estuary where runs into Luong Gac canal MD4: Estuary where river runs into Luong Gac canal MD4: Estuary where runs into Luong Gac canal MD4: Estuary where river runs into Luong Gac canal MD4: Estuary runs into Luong Gac canal MD4: Estuary where river runs into Luong Gac canal MD4: Estuary runs into Luong Gac canal M		MD2: Mong Duong bridge	0		21°03'51.5"	N	107°20'50.6"E			
AAQC Rehool of Environmental Science and Techn Mol Thursday MSc. Ton Thu Giang		MD3: Area where convey, MD4: Estuary where river	or transfers co. ' runs into Luo.	al to factory ng Gac canal	21°04'07.8" 21°04'25.3"	N	107°21`00.8"E 107°21`41.0"E			
MSc. Ton Thu Giang			QA/QC			School (Ha Noi, Septem of Environmental S	ber 9 th , 2024 Science and Tec	hnology	
MSc. Ton Thu Giang			,				Contraction of the		R	
MSc. Ton Thu Giang							Pay VIÊN			
MSc. Ton Thu Giang			S				VÀ CÔNG NGHỆ			
Stickundt		MSc.	Ton Thu Gis	lng			THUCHE	11		
VIEN TRUONG				D			SACN HANDA	/IÊN TRƯỞN	G	
PGS. TS. Mguyên Ohi Unh	<u>Notes:</u>						PGS.TS. J	Vguyễn Chi M	nh buyêt	

Times of issuance: 02

Page 2

BM 22.01

SCHOOL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

http://inest.hust.edu.vn Tel.: (84-24).38681686

No: 12/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Sampling Site	: Mong Duong 2 BOT Coal Fired Power Plant
Address	: Mong Duong ward - Cam Pha city - Quang Ninh province
Sampling Date	: 14-15/08/2024
Type of Samples	: Surface water
Number of Samples	: 05 samples

No	Parameters	Tmit	Analytical mothods			Results			QCVN 10:
	CIMAIII I I		Amary ucar memous	SW12	SW13	SW14	SW15	SW16	2023/BTNMT
1.	Temperature	°C	SMEWW 2550B:2023	31.9	36.3	35.5	34.9	34.8	1
2.	pH	T	TCVN 6492:2011	7.5	7.7	7.6	7.7	7.7	6.5 - 8.5
3.	EC	mS/cm	SMEWW 2510B:2023	15.7	49.2	50.1	53.4	56.8	1
4.	DO	mg/L	TCVN 7325:2016	7.2	7.5	7.7	7.7	7.9	l≥5
5.	BOD5	mg/L	SMEWW 5210B:2017	22	21	20	22	24	ı
6.	TSS	mg/L	TCVN 6625:2000	12	10	12	6	12	50
7.	Nitrate (NO ₃ -N)	mg/L	SMEWW 4500 NO ₃ E:2017	0.3	0.4	0.34	0.3	0.28	1
8.	Total N	mg/L	SMEWW 4500-N.C:2017	1.26	1.72	1.11	2.35	1.56	ı
9.	Total P	mg/L	TCVN 6202:2008	0.10	0.17	0.16	0.12	0.1	1
10.	Ammonium ^(*)	mg/L	SMEWW 4500 NH3.B&F:2023	<0.2	<0.2	0.22	0.2	0.25	0.1
11.	Arsenic (As) ^(*)	mg/L	US EPA Method 200.8	0.012	0.037	0.037	0.044	0.047	0.02
12.	Mercury (Hg) ^(*)	mg/L	US EPA Method 6020A: 1998	0.0002	<0.0001	<0.0001	<0.0001	0.0002	0.0005
13.	Lead (Pb)	mg/L	US EPA Method 200.8	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.05
14.	Cadmium (Cd)	mg/L	US EPA Method 200.8	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.005
15.	Chromium (Cr)	mg/L	US EPA Method 200.8	0.007	0.018	0.018	0.019	0.017	0.1

Notes:

I. The result is valid only for samples at the monitoring time.

Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer 2

The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer. 3.

4. Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology

Page 3

No Domoniotomo	TT	A wolvestool work ode		9	Results			QCVN 10:
	OUII	Allaly lical incluous	SW12	SW13	SW14	SW15	SW16	2023/BTNMT
16. Copper (Cu)	mg/L	US EPA Method 200.8	0.003	0.005	0.004	0.005	0.005	0.02
17. Zinc (Zn)	mg/L	US EPA Method 200.8	0.027	0.027	0.005	0.008	0.007	0.1
18. Nickel (Ni)	mg/L	US EPA Method 6020A: 1998	0.019	0.049	0.040	0.048	0.044	1
19. Manganese (Mn)	mg/L	US EPA Method 200.8	0.003	0.002	<0.0015	0.002	0.011	0.5
20. Iron (Fe)	mg/L	US EPA Method 6020B	0.22	0.19	0.19	0.16	0.17	0.5
21. Selenium (Se)	mg/L	US EPA Method 6020A: 1998	0.033	0.016	0.016	0.022	0.021	I
22. Total oil and grease	mg/L	SMEWW 5520B&F:2023	<1.0	<1.0	<1.0	<1.0	<1.0	5.0
23. Coliform	MPN/ 100mL	SMEWW 9221B:2023	400	360	370	200	330	1,000
Notes:								
- QCVN 10:2025/B1NM1 - Nai - Symbol (-): unstipulated; (*): ł	tional technical) Parameter is and	regulation on coastal water quality. Luoi ilyzed by sub-contractor.	ıg Gac, we ap	ply limit value	of polluted par	ameters in co	astal.	
- Sampling sites: Channel which	leads cooling w	ater of Mong Duong 1&2 Thermal Power	Plants into L	uong Gac				
- Sampling positions:				I	Coord	inates		
					X		Y	
SW12: Cooling water cana	ıl head			21°04	V., 39.5 'N	107°20	`40.6"E	
SW13: Behind cooling wat	er outlet of Mon	g Duong 1 Thermal Power Plant		21°04	1'43.4"N	107°20	`50.9"E	
SW14: Behind cooling wat	er outlet of Mon	g Duong 2 Thermal Power Plant		21°04	1'48.3"N	107°21	`04.4"E	
SW15: Cooling water chan	nel			21°0	5'05.0"N	107°21	'41.0"E	
SW16: Cooling water chan	nel			21°0:	5'05.0'N	107°21	`57.3"E	
					HaN	oi, Septembe	rr 9 th , 2024	
	QA/QC			Sch	ool of Envire	inmental Sci	ience and Te	chnology
						VIÊN VOL		
					//*/ KHC	NA HOC VO		
	X				D VA CÔI	VG NGHÊ		
					LIOM	RUONG ROW		
MSc. To	on Thu Giang				Ser.	I KHOPAT	<	(+ - ⁶ (e
)						VIEN TRI	DNO
						ST SDC	. Naunen On	hi Inh buret
							P.P.	0
<u>Notes:</u>								
1. The result is valid only for samples at the 2 Semula's information (semula's time sem	the monitoring time.	alo's shows starting 1 is more failed to de	:					
2. The samples will be destroyed after 5 da	tys from the date of is	anous and the province of the second se	r srwise agreed wii	th the customer.				

U

4. Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology

BM 22.01

Times of issuance: 02

Page 4

SCHOOL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

http://inest.hust.edu.vn Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi 4-24).38631686 Email: inest@hust.edu.vn Fax: (84-24).38693551 http://inest.hust.e Tel.: (84-24).38681686

No: 13/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

: Mong Duong 2 BOT Coal Fired Power Plant Sampling Site Address

: Mong Duong ward - Cam Pha city - Quang Ninh province

: 14-15/08/2024

Sampling Date

Coastal water Number of Samples Type of Samples

: 05 samples

QCVN 10:	2023/BTNMT	I	6.5 - 8.5	1	.∖∖	1	50	1		1	0.1	0.02	0.0005	0.05	0.005	0.1	0.02
	SW6	29.0	7.7	43.3	7.8	3.8	15	0.12	3.92	0.15	0.32	0.0512	<0.0003	<0.0005	<0.0005	0.0188	<0.003
	SW5b	29.4	7.8	43.8	8.0	3.7	12	0.11	3.25	0.18	0.24	0.0492	<0.0003	<0.0005	<0.0005	0.0132	<0.003
Results	SW4	29.5	7.7	44.6	7.7	3.4	11	0.12	3.03	0.15	0.24	0.0477	<0.0003	<0.0005	<0.0005	0.0314	<0.003
	SW3	29.8	7.6	43.5	7.9	3.8	10	0.11	3.81	0.03	0.31	0.0464	<0.0003	<0.0005	<0.0005	0.0099	<0.003
	SW2	30.7	7.6	43.7	7.7	3.5	6	0.11	5.16	0.4	0.29	0.0403	<0.0003	<0.0005	<0.0005	0.0155	<0.003
Analytical mathods		SMEWW 2550B:2023	TCVN 6492:2011	SMEWW 2510B:2023	TCVN 7325:2016	SMEWW 5210B:2017	TCVN 6625:2000	SMEWW 4500 NO ₃ -E:2017	SMEWW 4500-N.C:2017	TCVN 6202:2008	SMEWW 4500 NH3.B&F:2023	US EPA Method 200.8	US EPA Method 6020A: 1998	US EPA Method 200.8			
Ilmit		°C	ı	mS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Parameters	C IAIAIIIm Im T	Temperature	Hd	EC	DO	BOD5	ISS	Nitrate (NO ₃ -N)	Fotal N	Fotal P	Ammonium ^(*)	Arsenic (As)	Mercury (Hg) ^(*)	ead (Pb)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)
No		1.	2.1	3. 1	4. 1	5. 1	6.	7. 1	8.	9.]	10. /	11. 4	12. N	13. L	14. C	15. C	16. C

Notes:

I. The result is valid only for samples at the monitoring time.

2.

Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer 3.

The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer. Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology

BM 22.01

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY

http://inest.hust.edu.vn Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi 34-24).38681686 Email: inest@hust.edu.vn Fax: (84-24).38693551 http: //inest.hust.e Tel.: (84-24).38681686

No: 14/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

: Mong Duong ward - Cam Pha city - Quang Ninh province : Mong Duong 2 BOT Coal Fired Power Plant : 14-15/08/2024 : Coastal water : 07 samples Number of Samples Type of Samples Sampling Date Sampling Site Address

14	F		A				Results				QCVN 10:
N0.	Farameters	Unit	Analytical methods	LWS	SW8	SW9	SW10	SW11	SW18	SW19	2023/BTNMT
1.	Temperature	°C	SMEWW 2550B:2023	28.7	30.5	30.2	29.2	29.2	28.9	28.8	I
2.	hd	ı	TCVN 6492:2011	7.7	7.5	7.8	7.7	7.9	7.4	7.7	6.5 - 8.5
3.	EC	mS/cm	SMEWW 2510B:2023	44.4	43.9	43.5	45.4	43.7	49.5	50.7	T
4.	DO	mg/L	TCVN 7325:2016	7.9	7.8	7.7	8.1	7.8	8.2	7.9	l∕,
5.	BOD5	mg/L	SMEWW 5210B:2017	3.8	4.0	3.3	3.8	3.6	3.8	3.5	I
6.	TSS	mg/L	TCVN 6625:2000	14	13	12	12	11	12	12	50
7.	Nitrate (NO ₃ -N)	mg/L	SMEWW 4500 NO ₃ E:2017	0.16	0.23	0.12	0.12	0.13	0.13	0.18	·
8.	Total N	mg/L	SMEWW 4500-N.C:2017	3.59	3.7	3.36	3.41	3.31	3.14	3.75	I
9.	Total P	mg/L	TCVN 6202:2008	0.07	0.11	0.12	0.13	0.15	0.15	0.03	ı
10.	Ammonium ^(*)	mg/L	SMEWW 4500 NH3.B&F:2023	0.27	0.28	0.27	0.31	0.24	0.24	0.3	0.1
11.	Arsenic (As)	mg/L	US EPA Method 200.8	0.0506	0.0656	0.0480	0.0510	0.0550	0.0510	0.0480	0.02
12.	Mercury (Hg) ^(*)	mg/L	US EPA Method 6020A: 1998	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	0.0005
13.	Lead (Pb)	mg/L	US EPA Method 200.8	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.05
14.	Cadmium (Cd)	mg/L	US EPA Method 200.8	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.005
15.	Chromium (Cr)	mg/L	US EPA Method 200.8	0.0137	0.0147	0.0119	0.0156	0.0103	0.0196	0.0289	0.1

Notes:

I. The result is valid only for samples at the monitoring time.

Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer 3. 2

The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer. 4.

Do not quote any part of the analysis results without the agreement of the School of Erwironmental Science of Technology

Times of issuance: 02

No. Parameters	Unit	Anglytical mathode				Results				OCVN 10.
	ł	chours in the second	SW7	SW8	6M8	SW10	SW11	SW18	SW19	2023/BTNMT
10. Copper (Cu)	mg/L	US EPA Method 200.8	<0.003	<0.003	<0.003	<0.003	<0.003	0.008	0.005	0.02
1/. Zinc (Zn)	mg/L	US EPA Method 200.8	0.0196	0.0124	0.0211	0.0133	0.0167	0.0163	0.0162	0.1
18. Nickel (Ni)	mg/L	US EPA Method 6020A: 1998	0.054	0.043	0.063	0.050	0.059	0.057	0.051	1
19. Manganese (Mn)	mg/L	US EPA Method 200.8	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	0.5
20. Iron (Fe)	mg/L	US EPA Method 6020B	0.05	0.05	0.03	0.03	0.05	0.04	0.03	0.5
21. Selenium (Se)	mg/L	US EPA Method 6020A: 1998	0.022	0.017	0.020	0.022	0.023	0.019	0.021	
22. Total oil and grease	mg/L	SMEWW 5520B&F:2023	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0
23. Coliform	MPN/ 100mL	SMEWW 9221B:2023	330	310	360	270	260	270	310	1,000
	National tech): Parameter	nical regulation on coastal water qu is analyzed by sub-contractor.	tlity. Luong	Gac, we ap _l	oly limit valı	ve of pollute.	d parameter Coordinate	rs in coastal		
					X		0001 attrate	2	γ	
	S	CW7		2	I°03'12.3"	Λ			107°22'49.0	0"E
	S	.8.11.		2	1º05 '42.5 "N	1			107°22'16.0	$0.^{-1}E$
	S	6 <i>M</i> .		2.	1°05'31.0"	1			107°22'36.2	2."E
	1S	WIO		2.	l°04`59.0''N	1			107°22'36.5	3 "E
	SI	IIA		2.	1°03 '49.2 N	1			107°22'09.2	2 <i>"E</i>
	SU	W18		2,	l°04'33.7"N	Ι			107°21'21.5	8 <i>"E</i>
	2.M	<i>V</i> 19		21	l°04'33.5"N	7			107°21'42.5	5 <i>"E</i>
	QA/QC				Sc	hool of En	la Noi. Sep vironment	ttember 9 th ,	2024 and Techn	lology
	Ċ					B	KHOA HOA	TAC		
	7					S DA	CÔNG NGI			
	5					AL HC	101 TRƯỜNG	- At		
MSc. 7	Ton Thu Gi	ang					SACH KHON	J		
lotes:							D	VIÊ	N TRƯở	DN
The result is valid only for samples at 1. Sample's information (sample's type, s.	the monitoring tin ampling position,	me. , sample's characteristics) is provided by th	te customer				De	S. TS. Ngu	viên Chi	Inh Current
 I he samples will be destroyed after 5 a Do not quote any part of the analysis re 	lays from the date ssults without the	e of issue of environmental monitoring results agreement of the School of Environmental Sc	unless otherwis	e agreed with	the customer.			0		0
		" " " I THE DURN OF THE DURN OF THE DURNE OF	WHICH I FORMER	viogy						

Page 8

Times of issuance: 02

BM 22.01

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Email: inest@hust.edu.vn Tel.: (84-24).38681686

Fax: (84-24).38693551

http://inest.hust.edu.vn

No: 15/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Sampling Site	: Ash pond 2 - Mong Duong 2 BOT Coal Fired Power Plant
Address	: Cong Hoa commune - Cam Pha city - Quang Ninh province
Sampling Date	: 15/08/2024
Type of Samples	: Wastewater
Number of Samples	: 02 samples

No	Danamatana	Tinit	Analytical mothoda	Res	ults	QCĐP 3:2020/QN	
140.	rarameters	Unit	Analytical methods	AP-W1	AP-W2	C(Column B)	Cmax
1.	Temperature	°C	SMEWW 2550B:2023	32.4	32.1	40	40
2.	pН	-	TCVN 6492:2011	7.5	7.4	5.5 – 9.0	5.5 - 9.0
3.	Color (pH=7)	Pt/Co	TCVN 6185:2015	<5	<5	150	150
<u>4</u> .	TSS	mg/L	TCVN 6625:2000	13	11	100	90
5.	COD	mg/L	SMEWW 5220C:2023	19	9	150	135
6.	BOD ₅	mg/L	SMEWW 5220C:2023	9	5	50	45
7.	Arsenic (As)	mg/L	EPA method 200.8	0.0030	< 0.0015	0.1	0.09
8.	Mercury(Hg)	mg/L	EPA method 200.8	< 0.0005	< 0.0005	0.01	0.009
9.	Lead (Pb)	mg/L	EPA method 200.8	< 0.002	< 0.002	0.5	0.45
10.	Cadmium (Cd)	mg/L	EPA method 200.8	< 0.0005	0.0006	0.1	0.09
11.	Chromium III	mg/L	EPA Method 200.8 & SMEWW 3500-Cr.B.2023	0.014	0.014	1	0.9
12.	Chromium VI	mg/L	SMEWW 3500-Cr.B.2023	< 0.003	< 0.003	0.1	0.09
13.	Copper (Cu)	mg/L	EPA method 200.8	0.002	0.003	2	1.8
14.	Zinc (Zn)	mg/L	EPA method 200.8	< 0.005	< 0.005	3	2.7
15.	Nikel (Ni)	mg/L	EPA method 200.8	0.017	0.018	0.5	0.45
16.	Manganese (Mn)	mg/L	EPA method 200.8	0.076	0.026	1	0.9
17.	Iron (Fe)	mg/L	EPA method 200.8	1.2	1.2	5	4.5
18.	Total mineral oil & grease	mg/L	SMEWW5520B&F:2023	<1.0	<1.0	10	9
19.	Residue Chlorine	mg/L	TCVN 6225-3:2011	1.7	1.7	2	1.8
20.	Sulfide (as H ₂ S)	mg/L	SMEWWS ²⁻ B&D:2023	< 0.03	< 0.03	0.5	0.45
21.	Total N	mg/L	TCVN 6638:2000	3.5	3.5	40	36
22.	Total P	mg/L	TCVN 6202:2008	0.10	0.09	6	5.4
23.	Ammonium (NH4 ⁺)	mg/L	SMEWW 4500 NH ₃ .B&F:2023	0.10	0.09	10	9
24.	Fluoride (F ⁻)	mg/L	SMEWW 4500-F ⁻ .B&D:2023	6.16	6.69	10	9

Notes:

The result is valid only for samples at the monitoring time. 1.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

No	Paramotors	Tinit	Analytical mothoda	Res	ults	QCĐP 3:	2020/QN
110.	1 al allielel S	Um	Analytical methous	AP-W1	AP-W2	C(Column B)	Cmax
25.	Total Cyanide (CN ⁻) ^(*)	mg/L	SMEWW 4500 CN ⁻ C&E:2017	< 0.004	<0.004	0.1	0.09
26.	Total Phenol	mg/L	SMEWW 5530 B&C:2023	< 0.001	< 0.001	0.5	0.45
27.	Coliform	MPN/ 100mL	SMEWW 9221B:2023	330	220	5,000	5,000

Note

QCDP 3:2020/QN - Local technical regulation on industrial wastewater in Quang Ninh province; Column B specifies the C value of pollution parameters in industrial wastewater when discharged into water sources not used for domestic water supply purposes, C_{max} is the maximum allowable value of pollution parameters in industrial wastewater when discharging into the receiving water source:

 $C_{max} = C x K_q x K_f x K_{QN} = C x 1.0 x 0.9 x 1.0 = 0.9 x C$

In which:

+ C: Values of pollution parameters in industrial wastewater specified in QCDP 3:2020/QN

+ K_q : Coefficient of wastewater receiving source corresponding to the flow volume of rivers, streams, canals and ditches, or corresponding to the volume of lakes, ponds, lagoons; the use purpose of the coastal sea area $K_q = 1.0$;

+ K_f : Wastewater flow coefficient corresponding to the total wastewater flow of industrial facilities when discharging into the receiving water source $K_f = 0.9$;

+ K_{QN} : Coefficient of additional application specific to QCDP 03: 2020/QN for waste sources when discharged into rivers, streams, creeks, canals, lakes and reservoirs with different water use purposes and in different areas. different regions, $K_{QN} = 1.0$

- Symbol (-): unstipulated; (*): Parameter is analyzed by sub-contractor Institute of Science and Technology for Energy & Environment, Vimcerts 079.

- Sampling position:

AP-W1: Wastewater from AP2 Reservoir	
<i>AP-W2: Output of wastewater treatment system – Ash pond 2</i>	

Coora	linates
21°06'40.9"N	107°21`19.8"E
21°06 '42.5 "N	107°21`12.9''E
(2335395)	(458628)

QA/QC

MSc. Ton Thu Giang

Ha Noi, September 9th, 2024 School of Environmental Science and Technology

VIÊN TRƯỞNG PGS.TS. Nguyễn Chị Ánh Cuyết

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Tel.: (84-24).38681686

Email: inest@hust.edu.vn Fax: (84-24).38693551

http://inest.hust.edu.vn

No: 16/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

Sampling Site	: Ash pond 2 - Mong Duong 2 BOT Coal Fired Power Plant
Address	: Cong Hoa commune - Cam Pha city - Quang Ninh province
Sampling Date	: 15/08/2024
Type of Samples	: Noise
Number of Samples	: 01 sample x 2 times per day (day time and night time)

				Resu	lts	
No.	Sampling	Measurement	6h	-21h	21h	-6h
	positions	methods	Leq (dB _A)	Lmax (dB _A)	Leq (dBA)	Lmax (dBA)
1.	AP2-N	TCVN 7878-2:2018	58	63	52	55
	QCVN 26:20	10/BTNMT	70	-	55	-

Notes:

Symbol (-): unstipulated;

QCVN 26:2010/BTNMT - National Technical Regulation on noise

Sampling positions AP2-N: Wastewater treatment system

21° 6'43.23"N (2335415)

107°21'15.47"E (458700)

OA/OC

MSc. Ton Thu Giang

Ha Noi, September 9th, 2024 School of Environmental Science and Technology

Coordinates

VIỆN TRƯỞNG PGS.TS. Nguyễn Chị Anh Cuyết

Notes:

1. The result is valid only for samples at the monitoring time.

2. Sample's information (sample's type, sampling position, sample's characteristics ...) is provided by the customer

- 3. The samples will be destroyed after 5 days from the date of issue of environmental monitoring results unless otherwise agreed with the customer.
- Do not quote any part of the analysis results without the agreement of the School of Environmental Science of Technology 4.

Address: R303, C10 - Building Hanoi University of Science and Technology, Bach Khoa Ward, Hai Ba Trung Dist, Hanoi Tel.: (84-24).38681686 Email: inest@hust.edu.vn

Fax: (84-24).38693551

http://inest.hust.edu.vn

No: 17/27/KQQT/2024-EN

ENVIRONMENTAL MONITORING RESULTS

: Housing Colony - Mong Duong 2 BOT Coal Fired Power Plant

: Mong Duong ward - Cam Pha city - Quang Ninh province

Address Sampling Date Type of Samples

Sampling Site

: 15/08/2024

: Domestic wastewater Number of Samples : 02 samples

No	Paramatars	Unit	A nalytical matheda	Re	sult	QCVN 2008/BT	14: NMT
110.	T at anneters	Unit	Analytical methods	HS-NT1	HS-NT2	C (Column B)	C _{max}
1.	Temperature	°C	SMEWW 2550B:2023	30.5	31.6	-	-
2.	pН	-	TCVN 6492:2011	7.8	7.3	5.0-9.0	5.0-9.0
3.	TDS	mg/L	SOP-TDS	358	315	1,000	1,000
4.	TSS	mg/L	TCVN 6625:2000	17	10	100	100
5.	BOD ₅	mg/L	SMEWW 5210B:2023	48	7	50	50
6.	Sulfide (as H ₂ S)	mg/L	SMEWW 4500S2B&D:2023	< 0.03	< 0.03	4.0	4.0
7.	Ammonium (NH4 ⁺)	mg/L	SMEWW 4500 NH ₃ .B&F:2023	5.65	0.7	10	10
8.	Nitrate (NO ₃ ⁻ -N)	mg/L	SMEWW 4500 NO3 ⁻ E:2023	< 0.06	6.85	50	50
9.	Phosphate (PO ₄ ³⁻ -P)	mg/L	TCVN 6202:2008	7.2	1.66	10	10
10.	Surfactant ^(*)	mg/L	SMEWW 5540B&C:2017	< 0.015	< 0.015	10	10
11.	Animal Oil & Grease	mg/L	SMEWW 5520B&F:2023	<1.0	<1.0	20	20
12.	Coliform	MPN/ 100mL	SMEWW 9221B:2023	630	270	5,000	5,000

Note:

QCVN 14:2008/BTNMT – National technical regulation on domestic wastewater. Column B specifies C value of pollution parameters as a basis for calculating the permissible maximum value in domestic wastewater as being discharged into water resources not used for the purpose of domestic water supply. C_{max} value is calculated as follows: $C_{max} = C x K = C$

+ K coefficient =1.0 corresponding to condominiums and residential areas which have 50 apartments and more

- Symbol (-): unstipulated; (*): Parameter is analyzed by sub-contractor.

- "	Sampling	positions:	
10000000000000000000000000000000000000	a annana anna an an		

- Sampling positions:	Coordinates	
HS-NT1: Domestic wastewater at collection tank before treatment	21°04 '16.2 ''N	107°20`01.1`'E
HS-NT2: Domestic wastewater after treatment system	21°04'16.2''N	107°20'01.2''E
	(2330894)	(456546)

OA/OC

MSc. Ton Thu Giang

Ha Noi, September 9th, 2024 School of Environmental Science and Technology VIÊN KHOA HOC /À CÔNG NGI MÔI TRƯỜI ÊN TRƯỞNG Vguyễn Thị Ấnh Cuyết PGS.TS.J

Ghi chú:

- 1. Kết quả này chỉ có giá trị đối với mẫu tại thời điểm quan trắc.
- Thông tin về mẫu (loại mẫu, vị trí lấy mẫu, đặc điểm mẫu...) do khách hàng cung cấp và chịu trách nhiệm
- Mẫu sẽ được hủy bỏ sau 5 ngày kể từ khi kết quả phân tích được ban hành nếu khách hàng không có yêu cầu khác 3.
- 4. Không được trích sao một phần phiếu kết quả phân tích nếu không được sự đồng ý bằng văn bản của Viện KH & CNMT